

VSI OpenVMS

PERFDAT V4.8

DQL$ Reference Manual

February 2019

Revision/Update Information New manual.
Software Version VSI PERFDAT V4.8
Operating System Version OpenVMS Alpha V7.3-2 & higher

OpenVMS I64 V8.2 & higher

February 2019

Copyright © 2019 VMS Software, Inc., (VSI), Bolton Massachusetts, USA.

VMS Software Inc. makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
VMS Software Inc. shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

This document contains proprietary information, which is protected by copyright. No part of this
document may be photocopied, reproduced, or translated into another language without the prior
written consent of VMS Software Inc. The information contained in this document is subject to
change without notice

HPE, the HPE logo, and OpenVMS are trademarks of Hewlett-Packard Enterprise.

Microsoft, MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation in
the U.S. and/or other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from VSI required for possession, use or copying.

VMS Software Inc. shall not be liable for technical or editorial errors or omissions contained
herein. The information is provided “as is” without warranty of any kind and is subject to change
without notice. The warranties for VMS Software Inc. products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

DO-DPDDQL-01A - 3 – Version 4.8

Contents

Preface .. 5
VSI PERFDAT distributed performance database ... 6

Database Organization ... 6
Directory structure ... 8

PERFDAT$DB_LOCAL ... 9
PERFDAT$DB_ARCHIVE .. 9
PERFDAT$DB_TREND ... 9
PERFDAT$DB_SAVE .. 9
PERFDAT$DB .. 10

VSI PERFDAT Query Interface (DQL) ... 11
Prerequisites .. 11
Features.. 11
Components ... 12

DQL$SRV (DQL server) ... 12
Cluster view engine .. 14
Stored procedure engine ... 15
Statistics package ... 16
DQL$ command line utility .. 16
PDBC$SRV (Performance data connectivity server) .. 17

Introduction to DQL$ command line utility ... 18
Data query commands ... 18
Statistics query commands .. 19
Report extraction command .. 20
Data content management commands ... 20

DQL$ command line utility reference section .. 25
@ .. 26
ATTACH ALIAS .. 27
ATTACH FILE ... 29
CALCULATE (base form) ... 30
CALCULATE (deviation report) ... 36
CHECK FILE MAP ... 41
CONVERT ALIAS .. 42
CONVERT FILE ... 44
CORRELATE ... 45
CREATE GRAPH ... 49
CREATE METRIX .. 57
CREATE STORAGE AREA ... 59
DEATTACH ALIAS .. 62
DEATTACH FILE ... 64
DEFINE DATA HOST .. 65
DEFINE ELEMENT.. 66
DEFINE GRAPH_CFG ... 67
DEFINE HEADER .. 68
DEFINE PROCEDURE ... 69
DEFINE REGION .. 73
DEFINE VIEW .. 75
DROP ALIAS .. 77

DO-DPDDQL-01A - 4 – Version 4.8

DROP METRIX ... 79
DROP PHYSICAL STORAGE AREA .. 80
EXIT ... 81
EXPORT ... 82
EXTRACT REPORT ... 92
HELP ... 94
IMPORT .. 95
INSERT .. 101
LIST METRIX .. 105
LIST STATISTICS .. 109
LOAD ... 113
MAP .. 119
REBUILD DATABASE ... 131
REMOVE FILE MAP ... 132
REMOVE PROCEDURE .. 133
REMOVE REGION ... 136
REMOVE VIEW .. 138
SELECT .. 140
SET INFORMATIONAL ... 149
SET REGION .. 150
SET TRANSACTION ALIAS .. 152
SET TRANSACTION FILE .. 154
SET VERIFY .. 155
SHOW DATABASE ... 156
SHOW ELEMENT ... 158
SHOW FILE MAP ... 163
SHOW HEADER ... 164
SHOW LOGICAL STORAGE AREA .. 166
SHOW METRIX .. 168
SHOW PHYSICAL STORAGE AREA ... 171
SHOW PROCEDURE .. 173
SHOW REGION ... 175
SHOW STATISTICS .. 176
SHOW VERSION .. 179
SHOW VIEW ... 180
UPDATE HEADER .. 181

DO-DPDDQL-01A - 5 – Version 4.8

Preface

This manual includes:
 Description of the PERFDAT distributed database
 Introduction to the VSI PERFDAT Query Interface (DQL) and

description of the components.
 Introduction to the DQL$ command line utility. This section provides

an overview of to the command set available.
 Detailed description of the DQL$ command set alphabetically ordered.

Audience

This manual provides a detailed description of the DQL$ command set. The
reader should be familiar with

 VSI PERFDAT – Architecture and Technical Description

Document Structure

 Chapter 1 VSI PERFDAT distributed performance database
 Chapter 2 VSI PERFDAT Query Interface (DQL)
 Chapter 3 Introduction to DQL$ command line utility
 Chapter 4 DQL$ reference section

Conventions Used in this Manual

Special in examples indicates text that the system displays or
user type input.

UPCASE in a command represents text that you have to enter as
shown.

Lowercase indicates variable information that a user supplies.
Italics
[] in a command definition, enclose parts of the command that a

user can omit.
Key indicates a named key on the keyboard; for example, RETURN
CTRL/x is the symbol used to represent the pressing of a control key.

It indicates that the user holds down the key marked Ctrl and
press the appropriate key.

DO-DPDDQL-01A - 6 – Version 4.8

1

VSI PERFDAT distributed performance database

Database Organization

All data collected by the VSI PERFDAT OpenVMS data collector and the VSI
PERFDAT SNMP extension are stored in index sequential RMS files. Each data
collector (OpenVMS data collector, SNMP extension) creates a new file
whenever a collection is started (restarted), or on date change. Thus, 1 to n
data files can exist per day and collection. A single data file is called a physical
storage area. All physical storage areas that are created on the same day and
that belong to the same collection (collection profile & node) is called a logical
storage area. All logical storage areas created by the same data collection
make up a collection database. The sum of all collection databases available
within your environment is called the VSI PERFDAT distributed performance
database (see Fig.1.1).

The database alias for each collection database is automatically assigned and
cannot be changed by the user. The format of the alias is:

 Nodename_collection-profile

For example, an OpenVMS performance collection using a collection profile
DEFAULT running on node BCSXTC creates and accesses the collection
database BCSXTC_DEFAULT.

Trend and capacity report data files contain data of a particular time period –
called a report period (day, week, month, quarter, year – for more
information seethe manual VSI PERFDAT – Architecture and Technical
Description) - defined by the report profile used to create these reports. At
the end of such a predefined time period a new report data file is created, or
whenever the statistics defined in the report profile changes. A single report
data file is also called a physical storage area. A logical storage is the sum of all
physical storage areas that are created during a report period. For example, if
the report period is WEEK, all report data files created during a week make up
the logical storage area for this report.

The VSI PERFDAT OpenVMS data collector and the VSI PERFDAT SNMP
extension write the data directly via RMS calls to the appropriate data files.
The trend engine does not directly access the data file, but inserts data via the
DQL interface. Thus, as long as data files are write accessed by the VSI
PERFDAT OpenVMS data collector and the VSI PERFDAT SNMP extension
these files have to be stored locally. Data files, that are write accessed by the
auto-trend engine or by the DQL$ utility can be stored on any member of the
community (logical PERFDAT$COMMUNITY) the local node belongs to.

DO-DPDDQL-01A - 7 – Version 4.8

The VSI PERFDAT OpenVMS data collector as well as the VSI PERFDAT SNMP
extension create the data files in the directory pointed to by the logical
PERFDAT$DB_LOCAL on the local node.

Fig. 1.1 Database organization of the PERFDAT distributed database.

Report data files created by the auto-trend engine as well as the data files
(physical storage areas) created by the DQL$ utility are stored initially on the
local node too. However in contrast to the collection data files created by the
VSI PERFDAT OpenVMS data collector and the VSI PERFDAT SNMP extension
these files can be moved to another node within the PERFDAT community
(e.g. archive node) after write access has been released by the auto-trend

DO-DPDDQL-01A - 8 – Version 4.8

engine or the DQL$ utility, even if these files are reopened later on for data
insert, since the data is always accessed via the DQL interface.

Thus, report data files can be relocated between subsequent report
processing runs to another node of the PERFDAT community even if the auto-
trend engine inserts data into the (relocated) data files again the next time.

The query interface to the distributed performance database is similar to SQL.
All basic query statements such as SELECT, INSERT, CREATE, DROP etc. except
UPDATE and DELETE to prevent after image data manipulation are supported.
The main difference between a relational database such as Oracle, Informix,
mySQL etc. is that no root file exists for each database. All meta-data (field
and record descriptors, data link descriptors, index reference table descriptor
…) necessary to access the data in the file is stored in the header of each
physical storage area.

The advantage is that even if a physical storage area is moved to any other
OpenVMS node (target node) that is not member of the community that
physical storage stays read accessible to DQL without any additional actions
such as data conversion, un-load and load operations. Thus, any data file can
be copied to any OpenVMS node (target node) for offline analysis. The only
prerequisite is that the DQL environment is installed on that OpenVMS node
and it is configured as an archive node, or you simply define one of these
logicals:

 PERFDAT$NODEDATA_HOSTED
 PERFDAT$NO_NODE_FILTER

For more information about these logicals see the manual VSI PERFDAT –
Architecture and Technical Description. Version compatibility (= same
versions) of OpenVMS and PERFDAT between where the node data is
collected and where the node data is analysed is NOT required.

Data within physical storage areas are organized in METRICES, ELEMENTS and
STATISTICS. A METRIC consists of 1 to n ELEMENTS, and each ELEMENT
consists of 1 to n STATISTICS.

Comparing this structure to a classic database organization the following
comparisons are valid

 A METRIC is comparable to a TABLE.
 An ELEMENT is comparable to an INDEX of a TABLE.
 A STATISTIC is comparable to a FIELD within a TABLE.

Directory structure

Since no root file is involved for accessing the data files, directories are not
freely definable. They have to be stored in one of the directories listed below.

 PERFDAT$DB_LOCAL
 PERFDAT$DB_ARCHIVE
 PERFDAT$DB_TREND

DO-DPDDQL-01A - 9 – Version 4.8

 PERFDAT$DB_SAVE
 PERFDAT$DB

These logical directories have to exist on any node within the PERFDAT
environment. Otherwise some or all PERFDAT components may fail.

PERFDAT$DB_LOCAL

This is the default directory for creating performance collection data files. The
VSI PERFDAT OpenVMS data collector and the SNMP extension create files in
this directory. If the logical does not exist or does not reference a valid
physical directory, the data collectors fail.

PERFDAT$DB_ARCHIVE

All closed data files created by the VSI PERFDAT OpenVMS data collector and
the VSI PERFDAT SNMP extension are periodically moved to this directory by
the archiving process. The data files in this directory are managed by the
archiving process. It guarantees that all files are kept for a predefined period
of time (default 30 days – for more information see the manuals VSI PERFDAT
– Architecture and Technical Description and VSI PERFDAT– PERFDAT_MGR
Reference Manual). Physical storage areas that are older than the defined
keep time are automatically and unconditionally deleted. If this logical does
not exist, or the logical does not refer a valid physical directory the archiving
process fails.

PERFDAT$DB_TREND

Report data files are created in this directory. Between two subsequent report
runs, the report data file can be moved to the same directory on any other
node within the same community (e.g. archive node) and the report data file
stay write accessible to the auto-trend engine as explained in the previous
sections. If the logical does not exist or the logical does not refer to a valid
physical directory the auto-trend engine as well any report extraction
manually done via the DQL$ utility will fail.

PERFDAT$DB_SAVE

This directory is used for defining baseline performance data. A baseline is a
set of logical storage areas (performance collection data) that covers a full
week. The baseline represents a week where the system performance is
deemed normal based on the customer’s knowledge and experience. The
baseline has to be defined by the system manager by moving the appropriate
logical storage areas of a collection database to this directory. If the logical
directory does not exist or the logical does not reference a valid physical
directory a performance baseline cannot be defined. Thus, baseline deviation
reports will fail.

DO-DPDDQL-01A - 10 – Version 4.8

PERFDAT$DB

When accessing the distributed performance database the DQL interface
scans this directory on each member of the community for collection
databases of the community members. PERFDAT$DB is a directory search list.
Per default PERFDAT$DB refers to:

 PERFDAT$DB_LOCAL
 PERFDAT$DB_ARCHIVE
 PERFDAT$DB_TREND
 PERFDAT$DB_SAVE

This search list can be extended at any time. If this logical is not defined or it
does not refer to valid logical or physical directories the whole database or
parts of it will not be accessible via the DQL interface.

DO-DPDDQL-01A - 11 – Version 4.8

2

VSI PERFDAT Query Interface (DQL)

The VSI PERFDAT query interface DQL (Data Query Language) is the common
data access layer to the distributed performance database. It provides a data
abstraction and a network abstraction layer.

As described in chapter VSI PERFDAT distributed performance database, any
data file within the distributed performance database stores all meta-data
necessary to access the data in the file header (field and record descriptors,
data link descriptors, index reference table descriptor etc.). Due to the fact
that the query interface needs no implicit knowledge about the internal
structure of the data files, there exists no version dependency when accessing
the data. This data abstraction layer guarantees version independency for
read access.

The network abstraction layer grants transparent access to any data within
the defined community. A community is a logical partition of the whole
environment and defines the database view when accessing the data via one
system within a community regardless of where the data files are actually
stored within the community. Systems of particular interest to a PERFDAT user
can be configured in the context of a community. The systems that belong to a
particular community is freely definable e.g. all members of a cluster might be
part of a particular community, or standalone systems running the same
application may be part of another community. The community definition is
not cluster bound.

The command syntax of DQL is similar to SQL and makes data query easy.

Prerequisites

A supported TCP/IP stack for OpenVMS has to be installed and configured in
order to use VSI PERFDAT and the DQL query interface.

Features

 Query interface (DQL) similar to SQL
 Transparent single point access via network abstraction layer
 Up- and downward data compatibility via data abstraction layer
 Dynamic CSV file mapping capability for accessing and analysing data

from different data sources
 Multi file version support
 CSV load capability
 CSV file import capability (data is not only inserted but also

normalized)

DO-DPDDQL-01A - 12 – Version 4.8

 CSV export capability
 Statistic package fully integrated in data query interface
 Stored procedures (= user-defined statistics).
 Data Clustering (= ability to define cluster views. This feature enables

the user to run cluster wide data analysis without any change in the
workflow. All methods and features to analyse performance data of
single nodes are available for cluster views too).

Components

The query interface is not a monolithic layer but consists of six components as
shown in Fig. 2.1.

 DQL$SRV (DQL server)
 Cluster view engine
 Stored procedure engine
 Statistics Package
 DQL$ command line utility
 PDBC$SRV (Performance database connectivity server)

Fig. 2.1 Components of the DQL interface.

DQL$SRV (DQL server)

The DQL$SRV (DQL server) represents the data abstraction layer of the DQL
interface. This component directly accesses the data of the performance data
stored locally according to the definitions in the header of the data files. Its
main task is to map the data query command received from the cluster view
engine to RMS calls. Data read from the data files are converted into type

DO-DPDDQL-01A - 13 – Version 4.8

independent format and returned compressed to the calling layer. It handles
data of the collection databases stored locally as well as CSV files mapped
locally. In order to access a CSV file DQL$SRV reads the CSV descriptors from
the CSV mapping database (see Fig. 2.1) that defines the layout of the CSV file.
The CSV mapping (inserting the CSV descriptors into the CSV mapping
database) has to be done manually by the user using the MAP command of
the DQL$ command line utility (see the DQL$ command line utility reference
section).

The DQL server is implemented as an IP service. Thus, any node within your
environment can request data from the DQL$SRV. Up to 99 DQL$SRV
connections are allowed per node. Each DQL$SRV process can access up to
2048 data files concurrently.

The default listener port number of the DQL$SRV service is 3879. It can be
redefined by setting the system-wide logical DQL$SRV_PORT. Whenever this
logical has been modified the DQL$SRV service has to be restarted using the
LAUNCH DQL$SRV command of the PERFDAT_MGR utility.

Note

Once the DQL$SRV_PORT logical has been modified and the DQL$SRV service
has been restarted, you have to modify the following logicals on all nodes
where these logicals refer to the node you have redefined as the DQL$SRV
listener port:

 PERFDAT$COMMUNITY
 PERFDAT$ARCHIVE_NODE

To signal all VSI PERFDAT components that the DQL$SRV listener port on a
remote node differs from the default (3879), you have to add the new
DQL$SRV listener port to the node name string separated by a semicolon
when you define these system-wide logicals.

All informational, warning and error messages during the runtime of the
DQL$SRV processes are posted to OPCOM and stored in log-files. The log-files
are located in the PERFDAT$LOG directory. The filename has the following
format

 DQL$SRV_nodename.LOG

The DQL$SRV component can be explicitly started by invoking either of the
commands listed below, since there exists no dependency to any other
PERFDAT SW-component:

 $ MCR PERFDAT_MGR LAUNCH DQL$SRV
 $ @SYS$STARTUP:DQL$SRV_STARTUP.COM

Starting DQL$SRV in stand-alone mode may be important if the local node
hosts the distributed performance database or parts of it, but the local node
will not be used as an access server for the GUI.

DO-DPDDQL-01A - 14 – Version 4.8

Cluster view engine

The cluster view engine provides the feature to map performance data of
different nodes for cluster wide performance analysis. Once a cluster view is
created a virtual collection database is accessible that refers and maps the
data of the cluster view members. The advantage is that such a virtual cluster
view collection database can be accessed in the same way by the DQL$ utility
and the PERFDAT GUI as if it is a collection database created by the OpenVMS
data collector or the SNMP extension. Thus, all methods and features to
analyse performance data of single nodes are available for cluster views too.
Consequently the workflow to analyse cluster view performance data does
not differ from the workflow to analyse single node performance data.

Although in most cases cluster views will be created for cluster wide
performance data analysis of OpenVMS clusters there exists no restriction
that performance collection databases of OpenVMS cluster members only can
be members of a cluster view. Any collection database of any node available
can be added to a cluster view. The only restriction is that all collection
databases of a cluster view were created with the same sample interval.

Any data query is passed to the cluster view engine. If the data query requests
cluster view data, appropriate data queries are created for all members (=
collection databases) of the cluster view. These queries are sent to DQL$SRV.
The data streams received from DQL$SRV are merged (stacked) and the
merged (stacked) data stream is returned to the calling layer. If the data query
received contains no cluster view data requests the query is directly bypassed
to DQL$SRV.

Cluster views can be configured using the DQL$ utility or the GUI. Cluster view
definitions are node specific. Thus, a cluster view can be accessed by those
users only that are connected to the distributed PERFDAT performance data
via the same node on which the cluster view was configured. Cluster view
definitions are stored in node specific cluster view databases. The file names
of the cluster view databases have the format:

PERFDAT$CFG:DQL_VIEW_nodename.CFG

The cluster view databases are accessed by the cluster view engine only. Any
cluster view configuration request from the DQL$ utility or the GUI is passed
to the cluster view engine. It verifies:

 If all collection databases addressed by the cluster view exist and if
there exists at least one matching logical storage area within each
collection database. With other words, for at least one day
performance data have to exist in all collection databases.

 If all collection databases addressed by the cluster view were created
with the same sample interval

If one of these checks fail the configuration request is rejected. Otherwise the
view definition is stored in the node specific cluster view database and the
newly created cluster view is immediately accessible by the user.

DO-DPDDQL-01A - 15 – Version 4.8

Stored procedure engine

The stored procedure engine enables the user to define side (community,
node) specific measures (statistics). Such user-defined statistics are calculated
values and they are created using the DEFINE PROCEDURE command of the
DQL$ utility by assigning a function (procedure) to a freely definable statistics
name (For more information about defining stored procedures / user-defined
statistics please refer to section DQL$ command line utility reference section
of this manual). Statistics collected by the OpenVMS data collector or the
SNMP extension, existing user-defined statistics and constant values can be
used within the function (procedure) assigned. The supported operators are +,
-, * and /.

Any data query is passed to the stored procedure engine. If the data query
requests user-defined statistics, the data query is modified to request all base
statistics necessary to calculate the user-defined statistics. The modified query
is passed to the cluster view engine. Once the stored procedure engine
receives data from the cluster view engine the user-defined statistics is
calculated according to the assigned function (procedure) and the result is
returned to the caller. In case of stacked requests (SELECT and CALCULATE
queries) the input statistics are stacked before calculating the user-defined
statistics.

User-defined statistics are marked with a dollar ($) sign in front to indicate
that they are calculated statistics. The user can, but doesn’t, have to enter the
dollar ($) sign when defining the stored procedure. If the dollar sign is omitted
it is automatically assigned.

User-defined statistics and the assigned functions (procedures) are stored in
the stored procedure table of the PERFDAT configuration database. Thus,
once a user-defined statistics has been successfully defined it is immediately
accessible by all users accessing data via one of the nodes that share the same
PERFDAT configuration database.

The stored procedure table of the PERFDAT configuration database is
accessed by the stored procedure engine only. Any stored procedure (user-
defined statistics) configuration request is passed to the stored procedure
engine. It performs several checks before it inserts the user-defined statistics
into the stored procedure table of the PERFDAT configuration database:

 It checks if all statistics defined within the function (procedure)
assigned to the user-defined statistics exist.

 It checks the syntax of the function (procedure) assigned
o It checks if all brackets are present
o It checks if supported operators (+, -, *, /) are applied only

If one of these checks fails the configuration request is rejected.

There are several reasons to use this feature. Here are some examples:

 This feature is important in case you want to normalize data. E.g. the
statistics for the system wide CPU load collected by the OpenVMS
data collector ranges from 0 … 100% * number of CPUs. Thus, if you
are monitoring a system with 8 CPUs the statistics for the system wide

DO-DPDDQL-01A - 16 – Version 4.8

CPU load collected by the OpenVMS data collector ranges from 0 …
800 %. In order to fetch normalized data of the system wide CPU load
ranging from 0 … 100 % a user-defined statistics can be created (in
this example the user-defined statistics is named $iCpuNorm, but you
can choose any other name)

$iCpuNorm = iCpuLoad / iCpuCnt
where

iCpuLoad system wide CPU load collected by the
OpenVMS data collector

iCpuCnt number of CPUs.
 You can use this feature to create special statistics you are interested

in if these statistics are not directly collected by the OpenVMS data
collector or the SNMP extension but all input parameters to compute
them are available. E.g. you are interested in the average I/O size of
disk I/Os. The average I/O size is not collected by the OpenVMS data
collector but the number of I/Os to the device (iIOs) and the
throughput (iMBs) is collected. If you request the data of the user-
defined statistics

$iIOSize = iMbs / iIOs
for a disk device the average I/O size values are returned.

Statistics package

Any query is passed to the statistics layer. The query is analysed if it contains a
statistics request. If this is the case appropriate data queries are sent to stored
procedure engine. The data received from the stored procedure engine are
decompressed, locally cached, processed according to the statistics request
and the final result is returned to the caller. If the query is a data query the
query is bypassed directly to the stored procedure engine. (For more
information about the statistics package please refer to the manual VSI
PERFDAT – Architecture and Technical Description).

DQL$ command line utility

The DQL$ command line utility services interactive data and statistics query
from the DCL command line. The DQL$ command line utility and the
performance data connectivity server (PDBC$SRV) represent the network
abstraction layer of the DQL interface. Its main tasks are:

 Creating a virtual root file (memory resident) whenever a user
connects to the distributed performance database via the DQL$
command line utility. This is done by checking the community
definition (PERFDAT$COMMNUITY), establishing connections to
DQL$SRV on the nodes listed in the logical PERFDAT$COMMNUITY,
the archive node if defined, plus the local node. Once the connection
is established DQL$ asks the DQL server to return all known data files.
The DQL$ command line utility filters these files that belong to the
community (data files that are created by the members of the
community) and caches the data file links. Thus, the DQL$ keeps the
knowledge were the data files are located and how to access.

DO-DPDDQL-01A - 17 – Version 4.8

 Passing the data and statistics queries to the appropriate nodes that
host the data files. If the query refers to data files that are stored on
different nodes, the DQL$ command line utility de-assembles the
query, forwards appropriate queries to the nodes, consolidates the
data received and returns the result to the caller.

PDBC$SRV (Performance data connectivity server)

The performance data connectivity server is like the DQL$ command line
utility responsibly for transparent access to the data files within the defined
community (network abstraction). As with DQL$ services interactive requests
from the DCL command line PDBC$SRV services GUI requests.

The performance data connectivity server is implemented in a similar manner
to the DQL$SRV as an IP service. Up to 99 concurrent PDBC$SRV (PC-client)
connections are allowed per node.

The default listener port number of the PDBC$SRV service is 5254. It can be
redefined by setting the system-wide logical PDBC$SRV_PORT. Whenever this
logical has been modified the PDBC$SRV service has to be restarted using the
LAUNCH PDBC$SRV command of the PERFDAT_MGR utility.

All informational, warning and error messages during the runtime of
PDBC$SRV processes are posted to OPCOM and stored in log-files. The log-
files are located in the directory PERFDAT$LOG. The filename has the
following format

 PDBC$SRV_nodename.LOG

The PDBC$SRV component can be explicitly started by invoking either of the
commands listed below, since there exists no dependency to any other
PERFDAT SW-component:

 $ MCR PERFDAT_MGR LAUNCH DQL$SRV
 $ @SYS$STARTUPDQL$SRV_STARTUP.COM

Starting PDBC$SRV in stand-alone mode may be important if the local node is
be used as an access server (GUI) only, and no collection data files are stored
on the node.

If you have not installed TCPIP for OpenVMS on your system but you are using
another product such as MultiNet or TCPware then please modify
DQL$SRV_STARTUP.COM accordingly to add the DQL$SRV IP service.

DO-DPDDQL-01A - 18 – Version 4.8

3

Introduction to DQL$ command line utility

As described in chapter VSI PERFDAT Query Interface (DQL) the DQL$
command line utility is the DCL interface to handle interactive database
requests.

This section provides an overview of to the command set available. The DQL$
command set consists of four main groups

 Data query commands
 Statistics query commands
 Report extraction command
 Data content management commands

You can execute DQL$ command scripts using the @ command. A command
script can be any text file that contains valid DQL$ commands.

Data query commands

Table 3.1 summarizes the data query commands available. For more detailed
information about the available commands please refer to chapter DQL$
command line utility reference section.

Table 3.1 Data query command summary table

Command Description
ATTACH Attach a physical or logical storage area or a whole collection

database of the distributed performance database.

DEATTACH Disconnect from a physical or logical storage area or a
collection database of the distributed performance
database.

DEFINE HEADER This command can be applied in advance of the EXPORT and
the CREATE GRAPH command in order to enter a user-
defined header line for the CSV file or a user-defined caption
for the graph created.

INSERT Insert fields of a record or the whole record into an existing
metric of a physical storage area

SET TRANSACTION Set the transaction access for a physical or logical storage
area or a whole collection database of the distributed
performance database. The transaction access can be

 READ ONLY (default)
 READ WRITE

EXPORT Exports 1…n statistics from a metric of attached physical or
logical storage areas or whole collection databases to a CSV
file.

DO-DPDDQL-01A - 19 – Version 4.8

SELECT Reads data fields from a metric of attached physical or
logical storage areas or whole collection databases and
displays the data on screen.

CREATE GRAPH Reads data fields from a metric of attached physical or
logical storage areas or whole collection databases, creates
graphs from the data, converts these graphs into PNG
format and stores them either in a user-defined directory or
in the directory PERFDAT$GRAPH.

Statistics query commands

Table 3.3 summarizes the statistics query commands available. For more
detailed information about the available commands please refer to chapter
DQL$ command line utility reference section.

Table 3.3 Statistics query command summary table

Command Description
DEFINE ELEMENT This command can be applied in advance of the stacked

form of CALCULATE command in order to assign a user-
defined element name to the stacked element of a stacked
calculation or deviation report.

CALCULATE This command is used for two different types of calculations

 Depending on the parameters applied, this
command calculates the arithmetic mean value,
integral mean value, max value, standard deviation
or all of this for 1...n statistics of a metric.

 Deviation analysis

1...n statistics of a metric are read from two
different logical storage areas (= data of different
days). These data are averaged and compared to
each other. The percentage the source data
average differs from the reference data average is
displayed for each statistics and element. The
deviation analysis can be done integral or
arithmetic based.

CORRELATE Calculates the correlation between different statistics of
different metrics within a logical storage area.

DO-DPDDQL-01A - 20 – Version 4.8

Report extraction command

Table 3.3 describes the report extraction command in brief. For more detailed
information about the available commands please refer to chapter DQL$
command line utility reference section.

Table 3.3 Report extraction command summary table

Command Description
EXTRACT The EXTRACT command is used to create reports (trend,

capacity and baseline reports) according to predefined
report profiles. With the EXTRACT command you can apply
any predefined report profile to any collection database. The
only restriction is that the report is of the same type as the
collection database (OpenVMS reports can only be applied
to OpenVMS collection databases, Tru64 reports can only be
applied to Tru64 collection databases and so on).

Data content management commands

Table 3.4 summarizes the data content management commands available. For
more detailed information about the available commands please refer to
chapter DQL$ command line utility.

Table 3.4 Data content management command summary table

Command Description
CHECK This command checks if the CSV files addressed by the CSV

mapping entries in the CSV mapping database are valid.

CREATE Depending on the parameters applied the CREATE command
is used for creating a new physical storage area or a new
metric (table) within an existing physical storage area.

CONVERT Converts the header(s) of physical storage areas created by
an older VSI PERFDAT version than actually used to new
format. Collection databases have to be converted to actual
format if data shall be inserted. For read access there is no
need to convert the collection databases.

DEFINE  DATA HOST

The DEFINE DATA HOST command defines the
node (data host) were new data files created
during the current DQL$ session will be stored. The
user can define any community member or the
archive node as the new data host.

 ELEMENT

When a stacked element report or a stacked
deviation report is created these reports contain
the calculated values for a single (stacked)
element. This stacked element name can be
(re)defined by applying the DEFINE ELEMENT
command in advance of the CALCULATE
statement.

DO-DPDDQL-01A - 21 – Version 4.8

 HEDAER

If data are exported to a CSV file the header line
(comment) of that file and the caption of a graph
created by applying the CREATE GRAPH command
can be user-defined. This is done by applying this
command in advance of the EXPORT and CREATE
GRAPH command.

 PROCEDURE

Defines side specific, calculated statistics
(measures) that can, once defined, be accessed as
if they are part of the associated metrics of the
collection databases available.

 REGION
Used to define regional settings. The feature to
define regional settings increases the flexibility to
import, load and mapping CSV files of different
format and to export data to a CSV file formatted
as expected by the system the CSV will transferred
to.

 VIEW
Creates a cluster view. A cluster view maps
performance data of different nodes for cluster
wide performance analysis.

DROP Depending on the parameters applied the DROP command
deletes a metric within a physical storage area, a physical
storage area, a logical storage area or a whole collection
database.

IMPORT Imports data of a CSV file into an existing collection
database. Prerequisite for importing data of a CSV file is a
valid descriptor file for the CSV file, and the CSV file has to
contain a time column. For more information about creating
a CSV descriptor file please refer to the MAP command
description in the command reference section in this
manual.

Using the IMPORT command CSV data are normalized before
they are inserted into the collection database. It is very likely
that the timestamps in the time column do not match the
timestamps in the collection database. This is a prerequisite
when correlating data. Any correlation based on data that
does not match in time (timestamp of a sample, sample
interval) will return wrong results. Normalizing means that
based on the CSV data expectancy values are calculated for
the timestamps of the collection database. An integral based
algorithm is used to normalize the data.

LIST  METRIX
This command displays all the performance
metrics (tables) stored in the record descriptor
table of the VSI PERFDAT configuration database.

 STATISTICS
The LIST STATISTICS command displays the
statistics stored in the record description table of
the VSI PERFDAT configuration database and the
user-defined statistics (stored procedures) of a
particular performance metric (table). The field
name, data type, field length and the field
description is displayed.

DO-DPDDQL-01A - 22 – Version 4.8

LOAD Loads data of a CSV file into an existing collection database.
Prerequisite for importing data of a CSV file is a valid
descriptor file for the CSV file, and the CSV file has to contain
a time column. For more information about creating a CSV
descriptor file please refer to the MAP command description
in the command reference section in this manual.

Using the LOAD command CSV data are not pre-processed
(normalized) before they are inserted into the collection
database. The LOAD command should only be used if the
timestamps in the CSV file match exactly the timestamps in
the collection database. Otherwise it is recommended to use
the IMPORT command. The LOAD command consumes less
system resources and is faster than the IMPORT command.

MAP Maps CSV files to the distributed performance database.
Mapping a CSV files means that the data of the CSV file can
be accessed as if they are part of a collection database.
Prerequisite for mapping CSV files are

 In the first row of the CSV file the nodes the data
shall be visible to are inserted as a comma
separated list.

 The second row has to contain the column
headers. Max length of a header item is 64
characters. Max number of columns is 200.

 One column header item has to be named ‘Time’
and the data format of that column has to be
OpenVMS date/time format.

 The data rows of the CSV file have to be ordered
descending by the ‘Time’ column.

 A CSV descriptor file that contains a valid CSV
record descriptor. For more information about
creating a CSV descriptors and CSV descriptor files
please refer to to the MAP command description
in the command reference section in this manual.

It does not matter if the CSV file includes data of different
days. DQL splits the file virtually in order to map the CSV file
content to the database scheme.

There may co-exist several rows with the same time-stamp.
In that case 1 to max 3 columns can be defined as index
fields in the CSV descriptor file. It is not allowed to have
duplicates in the CSV file. A duplicate record contains the
same the timestamp and the index fields contain the same
data as another record.

Mapped CSV files can be accessed read only.

CSV data content cannot be correlated to other CSV file
content or to data of a collection database.

CSV file mappings are only valid on the node where the
mapping is done but the CSV content can be accessed by any
member of the community the node that hosts the CSV file
belongs to in case the node(s) listed in the first line of the
CSV file are also member(s) of the community.

Mapped CSV files are not managed by the VSI PERFDAT
environment. They have to be managed by the system
manager.

In order to map CSV file content a record descriptor is
required to define the record layout of the CSV file(s). CSV
record descriptors are stored in so called CSV descriptor
files. The CSV record descriptor file is inserted into the CSV

DO-DPDDQL-01A - 23 – Version 4.8

mapping database. PERFDAT$CFG:CSV_PROFILES.CFG when
the MAP command is executed. Thus, regardless if the CSV
descriptor file is deleted afterwards, the CSV mapping will be
valid till the CSV mapping is manually removed from the CSV
mapping database.

REMOVE  CSV File Mapping
Removes a valid CSV mapping from the CSV
mapping database.

 PROCEDURE
Removes particular user-defined statistics from
the stored procedure table of the VSI PERFDAT
configuration database.

 REGION
Removes existing regional settings from the
regional setting table of the VSI PERFDAT
configuration database.

 VIEW
Removes an existing cluster view.

SET  REGION
Changes the default regional setting for the
current DQL$ session and all subsequent DQL$
sessions started on any node that share the same
VSI PERFDAT configuration database.

SHOW Depending on the parameters applied one receives the
information listed below

 DATABASE
Shows all collection databases accessible within
the community.

 LOGICAL STORAGE AREA
Shows all logical storage areas within a particular
collection database.

 PHYSICAL STORAGE AREA
Depending on the parameter applied, the physical
storage areas within a logical storage area or
within a whole collection database are displayed.

 HEADER
Shows the headers of all attached physical storage
areas.

 METRIC
Shows the metrics (tables) available from each
attached physical storage area.

 STATISTICS
Shows the statistics available of a particular
metric.

 ELEMENT
Shows all elements of a particular metric stored in
all physical storage areas attached. Elements can
be sorted by any field of the metric to get hot
element statistics easily.

 CSV File Mapping
Shows the CSV mappings configured on the local

DO-DPDDQL-01A - 24 – Version 4.8

node.

 PROCEDURE
Displays the user-defined statistics stored in the
stored procedure table of the VSI PERFDAT
configuration database.

 REGION
Displays the default regional setting of the current
DQL$ session and all regional settings defined in
the regional setting table of the VSI PERFDAT
configuration database.

 VERSION

The SHOW VSERION command displays the version
of the DQL$ utility and DQL$SRV of the node the
current DQL$ session is connected to

 VIEW

Displays the cluster views configured on the local
node (content of the local cluster view database).

4

DQL$ command line utility reference section

This section alphabetically describes the available commands of the DQL$
command set in detail.

The DQL$ command line utility grants transparent access to the data files
within the defined community (network abstraction). The DQL$ utility services
interactive requests from DCL command line. To invoke the DQL$ command
line utility enter the following command at the DCL prompt:

$ MCR DQL$ [/REGION=regional setting]

The /REGION command qualifier can be applied. It defines the default regional
setting of the DQL$ session. If this command qualifier is omitted the default
regional setting stored in the regional setting table of the PERFDAT
configuration database is used (for more information about regional settings
please refer to the DEFINE REGION command description).

Note

Enter the /REGION command qualifier blank separated right after the image
activation MCR DQL$. Otherwise the qualifier is not passed to the DQL$
image and the regional setting will not be changed.

All statements of the DQL$ command line utility but the @, EXIT and HELP
command have to terminated by a semicolon (;). The maximum length of the
command input supported by DQL$ is 2048 characters.

@

DO-DPDDQL-01A - 26 – Version 4.8

@

Executes valid DQL$ command script.

Format

@file_name

Description

Executes valid DQL$ command script. DQL$ is requested to execute subsequent DQL$
commands from a specific file specified by file_name. To add a comment place an
exclamation mark (!) at the first position of the line that contains the comment.

Example

The DQL$ command script SYS$LOGIN:EXPORT.DQL contains statements to export data
to a CSV file:

!
! DEFINE HEADER
!
DEFINE HEADER "CLUSTER WIDE CPU LOAD / KERNEL MODE OF PERFDAT*, DQL*";
!
! EXPORT TO CSV FILE
!
EXPORT STACKED TIME, ICPULOAD, IKERNEL FROM PROCESS
ALIAS BCSXTC_DEFAULT,HOBEL_DEFAULT DATE 30-AUG-2005
ELEMENT PERFDAT*,DQL*
INTO SYS$LOGIN:PERFDAT_30052005.CSV;
!
! DISCONNECT FROM LOGICAL STORAGE AREAS
!
DEATTACH ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005;
DEATTACH ALIAS HOBEL_DEFAULT DATE 30-AUG-2005;

Execute the DQL$ command script:

DQL>@SYS$LOGIN:EXPORT.DQL
DQL-I-ATTACH, successfully attached file /BCSXTC_DEFAULT_2005-08-30:00:03:00:1/
DQL-I-ATTACH, successfully attached file /HOBEL_DEFAULT_2005-08-30:00:03:00:1/
DQL-EXPORT, start export data to /SYS$LOGIN:PERFDAT_30052005.CSV/
DQL-I-ATTACH, successfully deatached file /BCSXTC_DEFAULT_2005-08-30:00:03:00:1/
DQL-I-ATTACH, successfully deattached file /HOBEL_DEFAULT_2005-08-30:00:03:00:1/

For detailed information about the commands in the DQL$ command script please see
the appropriate command descriptions.

ATTACH ALIAS

DO-DPDDQL-01A - 27 – Version 4.8

ATTACH ALIAS

This command opens a collection database or logical storage area for
Read/Write access.

Format

ATTACH ALIAS alias_name [DATE date] [EXCLUSIVE];

Description

This command opens a collection database or a logical storage area according to
the access mode (Read/Write – Read Only) defined by the SET TRANSACTION
command. The default access mode is Read Only. Once the command returns
successfully the collection database/logical storage area stays accessible for the
runtime of the DQL$ session until you explicitly disconnect from the collection
database/logical storage area using the DEATTACH command.

The ALIAS clause specifies the alias of the collection database to open. That
database alias can’t be user-defined. DQL$ assigns these aliases when it starts
up automatically. The collection database aliases available are displayed when
you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If you want to access a logical storage area (all data files that have been created
on the same day) of a collection database, the DATE clause is mandatory. Use
OpenVMS date format to define the day of interest. If you omit the DATE clause
all data files (physical storage areas) of the collection database defined by the
ALIAS clause are opened.

If you omit the EXCLUSIVE keyword the collection database/logical storage area
is opened shareable. Using the EXCLUSIVE keyword the collection
database/logical storage area is opened non-shareable.

ATTACH ALIAS

DO-DPDDQL-01A - 28 – Version 4.8

Note

If you apply the EXCLUSIVE keyword the collection database/logical storage
area is always opened for Read/Write access independently of the
transaction type defined by the SET TRANSACTION command.

For further information about the distributed collection database please refer to
chapter VSI PERFDAT distributed performance database.

Examples

Example 1

This is example shows how to attach a collection database.

DQL>ATTACH ALIAS VNOABS_2MIN;
DQL-I-ATTACH, successfully attached file /VNOABS_2MIN_2003-SEP-19:00:03:00/
.
.
.
DQL-I-ATTACH, successfully attached file /VNOABS_2MIN_2003-SEP-25:00:03:00/

In this example the collection database referenced by the alias VNOABS_2MIN
(= sum of all data files that have been created by performance collections
started with the collection profile 2MIN on node VNOABS) is opened for
shareable Read/Write access.

Example 2

This is an example how to attach a logical storage area.

DQL>ATTACH ALIAS VNOABS_2MIN DATE 19-SEP-2003;
DQL-I-ATTACH, successfully attached file /VNOABS_2MIN_2003-SEP-19:00:03:00/
DQL-I-ATTACH, successfully attached file /VNOABS_2MIN_2003-SEP-19:15:03:00/

In this example the logical storage of the collection database referenced by the
alias VNOABS_2MIN containing the data files of 19-SEP-2003is opened for
shareable Read/Write access. The logical storage area consists of two physical
storage areas (data files)(VNOABS_2MIN_2003-SEP-19:00:03:00 and
VNOABS_2MIN_2003-SEP-19:15:03:00).

ATTACH FILE

DO-DPDDQL-01A - 29 – Version 4.8

ATTACH FILE

This command opens a specific database file (physical storage area) for
Read/Write access.

Format

ATTACH 'FILE filename_alias' [EXCLUSIVE];

Description

This command opens a specific database file (physical storage area) according to
the access mode (Read/Write – Read Only) defined by the SET TRANSACTION
command. The default access mode is Read Only. Once the command returns
successfully the data file stays accessible for the runtime of the DQL$ session
until you explicitly disconnect from the data file using the DEATTACH command.

The filename_alias parameter specifies the alias of the physical storage area.
That filename alias can’t be user-defined. DQL$ assigns these aliases when it
starts up automatically. The file name aliases available are displayed when you
apply the SHOW PHYSICAL STORAGE AREA command. The filename alias
includes information about the database and logical storage area the physical
storage area belongs to.

If you omit the EXCLUSIVE keyword the physical storage area is opened
shareable. Using the EXCLUSIVE keyword the physical storage area is opened
non-shareable.

Note

If you apply the EXCLUSIVE keyword the physical storage area is always
opened for Read/Write access independently of the transaction type defined
by the SET TRANSACTION command.

For further information about the distributed collection database please refer to
chapter VSI PERFDAT distributed performance database.

Example

DQL>ATTACH 'FILE VNOABS_2MIN_2003-SEP-18:20:43:00';
DQL-I-ATTACH, successfully attached file /VNOABS_2MIN_2003-SEP-18:20:43:00/

In this example the physical storage area of the collection database
VNOABS_2MIN (node: VNOABS, collection profile: 2MIN) created on 18-SEP-
200320:43:00 is opened for shareable Read/Write access.

CALCULATE (base form)

DO-DPDDQL-01A - 30 – Version 4.8

CALCULATE (base form)

This command selects element data for all statistics (data fields) of a metric
defined by the query and calculates depending on the calculation option
specified based on these data the arithmetic mean value, integral mean value,
max value, standard deviation or all of them.

Format

CALCULATE [STACKED] calculation_option
OF statistics_itemlist

FROM metrix_name
ALIAS alias_name [DATE] date

[ELEMENT] element_itemlist
[WHERE] filter_itemlist

[INTO] filename;

Description

This command selects element data for all statistics (data fields) of a metric
defined by the query and calculates depending on the calculation option
specified based on these data the arithmetic mean value, integral mean value,
max value, standard deviation or all of them.

DQL$ evaluates the clauses of the CALCULATE statement in the following order:

1. OF
2. FROM
3. ALIAS
4. DATE
5. ELEMENT
6. WHERE
7. INTO

The CALCULATE command first selects element data by executing a SELECT
statement, inserts the result into a temporary result table and executes the
calculation defined by the calculation option for each element and statistics
stored in that result table. The SELECT statement has the format:

SELECT [STACKED] statistics_itemlist FROM metric_name

ALIAS alias_name [DATE] date
[ELEMENT] element_name [WHERE] filter_list;

The arguments and clauses of the SELECT statement are copied from the
appropriate arguments and clauses in the CALCULATE command. For detailed
information about the following arguments and clauses please refer to the
SELECT command description:

CALCULATE (base form)

DO-DPDDQL-01A - 31 – Version 4.8

 STACKED
 FROM
 ALIAS
 DATE
 ELEMENT
 WHERE

The CALCULATE statement does not support direct address mode to address the
data fields (statistics_itemlist) to calculate (for information about supported
data field (statistics) address modes please refer to the SELECT command
description).

Depending if the STACKED argument is applied or not the CALCULATION query is
stacked or un-stacked.

Since the stacked form of the CALCULATION statement selects element data
using the stacked form of the SELECT statement the result table consists of one
element per statistics that contains the stacked data of all elements that match
the CALCULATE query filter defined by the ELEMENT and WHERE clause. The un-
stacked form of the command selects the data using the un-stacked form of the
SELECT statement. Thus, the result table contains as many elements per
statistics as defined by the ELEMENT and WHERE clause.

With other words the un-stacked form of the CALCULATE statement creates an
element selective report that contains the calculated values for each element
and statistics defined. Since the input table of the stacked form of the command
contains stacked element data, only one element that addresses these data
exists. Thus, a stacked element report is created containing the calculated
values for that single (stacked) element. A user-defined element name is
assigned to that element. The stacked element name can be redefined by
applying the DEFINE ELEMENT command in advance of the CALCULATE
statement. The default name of that stacked element is STACKED.

Prerequisite:
The data files of the collection database / logical storage areas defined by the
ALIAS and DATE clause have to be attached in advance using the ATTACH
command.

Supported keywords for the calculation option are:

 ARITHMETIC_MEANVALUE
The arithmetic mean value for each statistics defined by the OF clause is

calculated ( nxx navg /).

 INTEGRAL_MEANVALUE
The integral mean value for each statistics defined by the OF clause is
calculated ( txdtxavg /).

 MAXIUMUM

CALCULATE (base form)

DO-DPDDQL-01A - 32 – Version 4.8

The maximum value for each statistics defined by the OF clause is
evaluated.

 STD
The standard deviation for each statistics defined by the OF clause is
calculated.

 ALL
The arithmetic mean value, integral mean value, maximum value and
the standard deviation for each statistics defined by the OF clause is
calculated.

The calculation option keyword is mandatory.

The OF clause specifies the statistics to be selected from the source databases.
Enter the statistics as a comma separated list. All statistics specified in the OF
clause must exist in the metric defined by the FROM clause. Otherwise the
command fails. To verify if the statistics are valid use the SHOW STATISTICS
command. The OF clause is mandatory.

You can redirect the output of the query to a user definable CSV file if you apply
the optional INTO clause. If you omit the INTO clause the result of the query is
only displayed on screen.

Examples

Example 1

DQL>CALC ALL OF ICPULOAD FROM PROCESS
cont>ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005 ELEMENT PERFDAT*;
Done: 0%...20%...100%

ALL STAT. CALCULATION, METRIX: PROCESS, COLLECTION(S):

ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005
PARAMETER: N/A

Statistics | Type iCpuLoad
Elements |
------------------------------------|------------------------------------
PERFDAT | (arithmetic) 0.303
PERFDAT | (integral) 0.303
PERFDAT | (max) 1.808
PERFDAT | (std) 0.116
PERFDAT_ARCHIVE | (arithmetic) 0.000
PERFDAT_ARCHIVE | (integral) 0.000
PERFDAT_ARCHIVE | (max) 0.058
PERFDAT_ARCHIVE | (std) 0.002
PERFDAT_REPORT | (arithmetic) 27.100
PERFDAT_REPORT | (integral) 0.264
PERFDAT_REPORT | (max) 39.466
PERFDAT_REPORT | (std) 28.265
PERFDAT_SNMP | (arithmetic) 0.000
PERFDAT_SNMP | (integral) 0.000
PERFDAT_SNMP | (max) 0.008
PERFDAT_SNMP | (std) 0.001
PERFDAT_SNMP_0 | (arithmetic) 0.014

CALCULATE (base form)

DO-DPDDQL-01A - 33 – Version 4.8

PERFDAT_SNMP_0 | (integral) 0.014
PERFDAT_SNMP_0 | (max) 0.058
PERFDAT_SNMP_0 | (std) 0.011

In this example the un-stacked form of the CALCULATE command is used to
calculate the arithmetic mean value, integral mean value, standard deviation
and maximum value of the statistics iCpuLoad (CPU load) for each process that
match the element filter criteria PERFDAT*.Data source is the logical storage
area that contains the performance data of node HOBEL from 30-AUG-2005.
Since no time filter is defined by the WHERE clause the time range for the
calculation is the whole day.

Example 2

DQL>CALC ALL OF ICPULOAD FROM PROCESS
cont>ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005 ELEMENT PERFDAT*
cont> WHERE TIME > 30-AUG-2005 10:00, TIME < 30-AUG-2005 12:00;
Done: 0%...20%...100%

ALL STAT. CALCULATION, METRIX: PROCESS, COLLECTION(S):

ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005
PARAMETER:
 TIME > 30-AUG-2005 10:00, TIME < 30-AUG-2005 12:00

Statistics | Type iCpuLoad
Elements |
------------------------------------|------------------------------------
PERFDAT | (arithmetic) 0.305
PERFDAT | (integral) 0.305
PERFDAT | (max) 0.500
PERFDAT | (std) 0.057
PERFDAT_ARCHIVE | (arithmetic) 0.000
PERFDAT_ARCHIVE | (integral) 0.000
PERFDAT_ARCHIVE | (max) 0.008
PERFDAT_ARCHIVE | (std) 0.001
PERFDAT_SNMP | (arithmetic) 0.000
PERFDAT_SNMP | (integral) 0.000
PERFDAT_SNMP | (max) 0.008
PERFDAT_SNMP | (std) 0.001
PERFDAT_SNMP_0 | (arithmetic) 0.012
PERFDAT_SNMP_0 | (integral) 0.013
PERFDAT_SNMP_0 | (max) 0.033
PERFDAT_SNMP_0 | (std) 0.009

This example demonstrates the use of the WHERE clause. The CALCULATE
statement is almost identical to the statement in Example 1. The only difference
is that the WHERE clause is present, that defines the time range for the
calculation. In this case the time range is 30-AUG-200510:00 to 30-AUG-
200512:00. If you compare the report created with the report in example 1 you
can see that the process PERFDAT_REPORT is missing since this process did not
exist during the specified time range.

Example 3

DQL>CALC STACKED ALL OF ICPULOAD FROM PROCESS

CALCULATE (base form)

DO-DPDDQL-01A - 34 – Version 4.8

cont>ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005 ELEMENT PERFDAT*;
Done: 0%...20%...100%

ALL STAT. CALCULATION, METRIX: PROCESS, COLLECTION(S):

ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005
PARAMETER: N/A

Statistics | Type iCpuLoad
Elements |
------------------------------------|------------------------------------
STACKED | (arithmetic) 0.582
STACKED | (integral) 0.581
STACKED | (max) 37.604
STACKED | (std) 2.791

In this example the stacked form of the CALCULATE command is used to
calculate the arithmetic mean value, integral mean value, standard deviation
and maximum value (ALL calculation option) of the stacked iCpuLoad (CPU load)
statistics for a group of processes (all PERFDAT processes). The processes of
interested are defined by the element filter criteria PERFDAT*. Data source is
the logical storage area that contains the performance data of node BCSXTC
from 30-AUG-2005. Since the data of all processes that match the element filter
criterion are stacked before the calculation is done only one value per
calculation type (arithmetic mean value, integral mean value, standard
deviation, maximum value) is displayed. Since the data of several processes are
stacked the values calculated can’t be assigned to a single process (element
name). Thus, a user-defined element name is displayed in the element column
of the report. The stacked element name can be redefined by applying the
DEFINE ELEMENT command in advance of the CALCULATE statement. If no
stacked element name has been defined before the default stacked element
name STACKED is displayed.

Example 4

DQL>DEFINE ELEMENT “PERF_CLUE”;

DQL>CALC STACKED ALL OF ICPULOAD FROM PROCESS
cont>ALIAS BCSXTC_DEFAULT, HOBEL_DEFAULT DATE 30-AUG-2005
cont>ELEMENT PERFDAT*;
Done: 0%...20%...100%

ALL STAT. CALCULATION, METRIX: PROCESS, COLLECTION(S):

 ALIAS BCSXTC_DEFAULT, HOBEL_DEFAULTDATE 30-AUG-2005
 PARAMETER: N/A

Statistics | Type iCpuLoad
Elements |
------------------------------------|------------------------------------
PERF_CLUE | (arithmetic) 0.676
PERF_CLUE | (integral) 0.675
PERF_CLUE | (max) 42.850
PERF_CLUE | (std) 3.139

CALCULATE (base form)

DO-DPDDQL-01A - 35 – Version 4.8

In this example the stacked form of the CALCULATE command is used to
calculate the arithmetic mean value, integral mean value, standard deviation
and maximum value (ALL calculation option) of the stacked iCpuLoad (CPU load)
statistics for all processes that where active on the nodes BCSXTC and HOBEL on
30-AUG-2005 and match the filter criterion PERFDAT*. Since the data of all
these processes are stacked before the calculation is done only one value per
calculation type (arithmetic mean value, integral mean value, standard
deviation, maximum value) is displayed. Since the data of several processes are
stacked the values calculated can’t be assigned to a single process (element
name). Thus, a user-defined element name is displayed in the element column
of the report. The stacked element name can be redefined by applying the
DEFINE ELEMENT command in advance of the CALCULATE statement. In this
example the DEFINE ELEMENT command has been used to assign the name
PERF_CLUE.

CALCULATE (deviation report)

DO-DPDDQL-01A - 36 – Version 4.8

CALCULATE (deviation report)

This command creates a deviation analysis report for 1…n statistics and 1…m
elements of a metric. The element data of1...n statistics of a metric are read
from two different logical storage areas (= data of different days). These data
are averaged and compared to each other. The percentage the source data
average differs from the reference data average is displayed for each statistics.
The deviation analysis can be done integral or arithmetic based.

Format

CALCULATE [STACKED] calculation_option DEVIATION
OF statistics_itemlist

FROM metrix_name
[ELEMENT] element_itemlist

SOURCE (ALIAS src_alias_name DATE src_date [WHERE] src_fiter_itemlist)
REFERENCE (ALIAS ref_alias_name DATE ref_date [WHERE] ref_fiter_itemlist)

[INTO] filename;

Description

This command creates a deviation analysis report for 1…n statistics and 1…m
elements of a metric. Element data of 1...n statistics of a metric are read from
two different logical storage areas (= data of different days). These data are
averaged and compared to each other. The percentage the source data average
differs from the reference data average is displayed for each statistics. The
deviation analysis can be done integral or arithmetic based.

DQL$ evaluates the clauses of the CALCULATE statement in the following order:

1. OF
2. FROM
3. ELEMENT
4. SOURCE

 ALIAS
 DATE
 WHERE

5. REFERENCE
 ALIAS
 DATE
 WHERE

6. INTO

The CALCULATE command first selects element data from the source logical
storage areas defined by the SOURCE clause and element data from the
reference logical storage areas defined by the REFERENCE clause by executing
appropriate SELECT statement. The result of both SELECT queries are inserted

CALCULATE (deviation report)

DO-DPDDQL-01A - 37 – Version 4.8

into temporary result tables and according to the calculation option the
arithmetic or integral mean value is calculated for each statistics and element
stored in these result tables. The ratio between the source average values and
the reference average value for each statistics and element available in both
result tables are displayed. The source SELECT statement has the format:

SELECT [STACKED] statistics_itemlist FROM metric_name

ALIAS src_alias_name DATEsrc_date
[ELEMENT] element_name [WHERE] src_filter_list

The reference SELECT statement has the format:

SELECT [STACKED] statistics_itemlist FROM metric_name

ALIAS ref_alias_name DATEref_date
[ELEMENT] element_name [WHERE] ref_filter_list

The arguments and clauses of the SELECT statement are copied from the
appropriate arguments and clauses in the CALCULATE command. For detailed
information about the following arguments and clauses please refer to the
SELECT command description

 STACKED
 FROM
 ALIAS
 DATE
 ELEMENT
 WHERE

The CALCULATE statement does not support direct address mode to address the
data fields (statistics_itemlist) to calculate (for information about supported
data field (statistics) address modes please refer to the SELECT command
description).
Depending if the STACKED argument is applied or not the CALCULATION query is
stacked or un-stacked.

Since the stacked form of the CALCULATION statement selects element data
using the stacked form of the SELECT statement the result tables consist of one
element per statistics that contains the stacked data of all elements that match
the CALCULATE query filters defined by the ELEMENT and (source or reference)
WHERE clause. The un-stacked form of the command selects the data using the
un-stacked form of the SELECT statement. Thus, the result tables contain as
many elements per statistics as defined by the ELEMENT and (source or
reference) WHERE clause.

With other words the un-stacked form of the CALCULATE statement creates an
element deviation report that contains the calculated values for each element
and statistics defined. Since the input tables of the stacked form of the
command contains stacked element data, only one element that addresses
these data exists. Thus, a stacked element report is created containing the

CALCULATE (deviation report)

DO-DPDDQL-01A - 38 – Version 4.8

calculated values for that single (stacked) element. A user-defined element
name is assigned to that element. The stacked element name can be redefined
by applying the DEFINE ELEMENT command in advance of the CALCULATE
statement. The default name of that stacked element is STACKED.

Prerequisite:
The data files of the logical storage areas defined by the ALIAS and DATE clause
within the SOURCE and REFERENCE clause have to be attached in advance using
the ATTACH command.

Supported keywords for the calculation option are:

 ARITHMETIC_MEANVALUE
The average values to compare are calculated arithmetical (

 nxx navg /).

 INTEGRAL_MEANVALUE
The average values to compare are calculated integral ( txdtxavg /
).

The calculation option keyword is mandatory.

The OF clause specifies the statistics to be selected from the source and
reference logical storage areas defined by the SOURCE and REFERENCE clause.
Enter the statistics as a comma separated list. All statistics specified in the OF
clause must exist in the metric defined by the FROM clause. Otherwise the
command fails. To verify if the statistics are valid use the SHOW STATISTICS
command. The OF clause is mandatory.

The SOURCE clause specifies the source logical storage areas and optional filter
criteria that apply to the source SELECT query. The REFERENCE clause specifies
the reference logical storage areas and optional filter criteria that apply to the
reference SELECT query. Both clauses start with an open bracket (“(“) and ends
with a close bracket (“)”).

In contrast to the SELECT statement the DATE clause is mandatory within the
SOURCE and the REFERNCE clause. Enter all the days of interest within the DATE
clause as a comma separated date list. Use OpenVMS date format to define the
days of interest.

You can redirect the output of the query to a user definable CSV file if you apply
the optional INTO clause. If you omit the INTO clause the result of the query is
only displayed on screen.

Examples

Example 1

DQL> CALC INTEG DEVIATION OF ICPULOAD FROM PROCESS ELEMENT PERFDAT*

CALCULATE (deviation report)

DO-DPDDQL-01A - 39 – Version 4.8

cont> SOURCE (ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005)
cont> REFERENCE (ALIAS BCSXTC_DEFAULT DATE 20-APR-2005);

 Integral deviation, Metrix: PROCESS
 Source Parameter: ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005
 Reference Parameter: ALIAS BCSXTC_DEFAULT DATE 20-APR-2005
 Element list: PERFDAT*

Done: 0%...20%...100%

Done: 0%...33%...100%

Statistics | iCpuLoad
Elements |
------------------------------------|------------------------
PERFDAT | -0.937
PERFDAT_ARCHIVE | -26.666
PERFDAT_REPORT | -11.723

This example demonstrates the use of the un-stacked form of the statement.
The deviation of the average CPU load caused by all PERFDAT processes (see
ELEMENT clause PERFDAT*) active on node BCSXTC on two different days is
calculated. The source date is 30-AUG-2005. The reference date is 20-APR-2005.
Since element data are selected un-stacked the calculation is done un-stacked
for each statistics and process that were active on node BCSXTC during both
days. Processes that match the source element filter criteria but were not active
on one the reference day and vice versa are not listed in the report. As you can
see the average CPU load caused by the process PERFDAT_REPORT was 26.67 %
less on 30-AUG-2005 than on 20-APR-2005.

Example 2

DQL> CALC STACKED INTEG DEVIATION OF ICPULOAD FROM PROCESS
cont> ELEMENT PERFDAT*
cont> SOURCE (ALIAS BCSXTC_DEFAULT, HOBEL_DEFAULT DATE 30-AUG-2005)
cont> REFERENCE (ALIAS BCSXTC_DEFAULT, HOBEL_DEFAULT DATE 20-APR-2005);

 Integral deviation, Metrix: PROCESS
 Source Parameter: ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005
 Reference Parameter: ALIAS BCSXTC_DEFAULT DATE 20-APR-2005
 Element list: PERFDAT*

Done: 0%...100%

Done: 0%...100%

Statistics | iCpuLoad
Elements |
------------------------------------|------------------------
STACKED | -3.960

This example demonstrates the use of the stacked form of the statement. The
deviation of the stacked average CPU load caused by all PERFDAT processes (see
ELEMENT clause PERFDAT*) active on the nodes BCSXTC and HOBEL on two
different days is calculated. The source day is 30-AUG-2005. The reference day
is 20-APR-2005. Since the data of all these processes are stacked before the

CALCULATE (deviation report)

DO-DPDDQL-01A - 40 – Version 4.8

calculation is done only one value per calculation type (arithmetic mean value,
integral mean value, standard deviation, maximum value) is displayed. Since the
data of several processes are stacked the deviation calculated can’t be assigned
to a single process. Thus, a user-defined element name is displayed in the
element column of the report. Since the DEFINE ELEMENT command has not
been applied in advance of the CALCULATE statement the default stacked
element name STACKED is displayed. As you can see the average CPU load
caused by all PERFDAT processes active on both nodes BCSXTC and HOBEL
consumed 3.96 % less CPU power on 30-AUG-2005 than on 20-APR-2005.

CHECK FILE MAP

DO-DPDDQL-01A - 41 – Version 4.8

CHECK FILE MAP

This command checks if the CSV files addressed by the CSV mapping entries in
the CSV mapping database are valid.

Format

CHECK FILE MAP;

Description

This command checks if the CSV files addressed by the entries in the CSV
mapping database are valid. This is done for each CSV mapping entry in the CSV
mapping database. If an invalid record is found in a CSV file mapped the file
name and the line number of the invalid record is displayed.

For detailed information about CSV file mapping please see the MAP command
description.

CONVERT ALIAS

DO-DPDDQL-01A - 42 – Version 4.8

CONVERT ALIAS

Converts the headers of all performance collection data files (physical storage
areas) that are member of a collection database / logical storage area created
by an older PERFDAT version than actually used to new format.

Format

CONVERT ALIAS alias_name [DATE date];

Description

Converts the headers of all performance collection data files (physical storage
areas) that are member of a collection database created by an older PERFDAT
version than actually used to new format.

The ALIAS clause specifies the alias of the collection database to convert. That
database alias can’t be user-defined. DQL$ assigns these aliases when it starts
up automatically. The collection database aliases available are displayed when
you apply the SHOW DATABASE command. The aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If you want to convert all physical storage areas of a logical storage area (all
data files that have been created on the same day) the DATE clause is
mandatory. Use OpenVMS date format to define the day of interest. If you omit
the DATE clause all data files (physical storage areas) of the collection database
are converted.

You have to convert data files to new format if you want to insert new records
into exiting data files after upgrading PERFDAT to new version manually. Read
only data files do not have to be converted, since data files are read accessible
independently of the PERFDAT version in use. Trend and capacity report data
files are converted automatically by the upgrade and installation procedure of
PERFDAT.

In order to convert collection databases/logical storage areas they don’t have to
be attached in advance. This is done implicitly.

Example

DQL> CONVERT ALIAS HOBEL_DEFAULT DATE 30-AUG-2005;
DQL-I-Convert, successfully converted physical storage area /HOBEL_DEFAULT_2005-08-30:00:03:00:1/
DQL-I-Convert, successfully converted physical storage area /HOBEL_DEFAULT_2005-08-30:10:27:00:1/

CONVERT ALIAS

DO-DPDDQL-01A - 43 – Version 4.8

This example shows how to convert the logical storage area 30-AUG-2005 of the
collection database HOBEL_DEFAULT to new format. The logical storage area
consists of two physical storage areas – one data file was created at 30-AUG-
200500:03 and the other on 30-AUG-2005 0:27.

CONVERT FILE

DO-DPDDQL-01A - 44 – Version 4.8

CONVERT FILE

Converts the header of a performance collection data files (physical storage
areas) created by an older PERFDAT version than actually used to new format.

Format

CONVERT 'FILE filename_alias';

Description

Converts the header of a performance collection data files (physical storage
areas) created by an older PERFDAT version than actually used to new format.

The filename_alias parameter specifies the alias of the physical storage area.
The filename alias can’t be user-defined. DQL$ assigns these aliases when it
starts up automatically. The collection database aliases available are displayed
when you apply the SHOW PHYSICAL STORAGE AREA command. The filename
alias includes information about the database and logical storage area that
physical storage area belongs to.

You have to convert a data file to new format if you want to insert new records
into the metrics of the data files after upgrading PERFDAT to new version
manually. Read only data files do not have to be converted, since data files are
read accessible independently of the PERFDAT version in use.

Example

DQL> CONVERT ‘FILE HOBEL_DEFAULT_2005-08-30:00:03:00:1’;
DQL-I-Convert, successfully converted physical storage area /HOBEL_DEFAULT_2005-08-30:00:03:00:1/

This example shows how to convert the physical storage area (data file)

HOBEL_DEFAULT_2005-08-30:00:03:00:1
to new format.

CORRELATE

DO-DPDDQL-01A - 45 – Version 4.8

CORRELATE

This command calculates the correlation of the data of 1...n elements of a
source statistics of a metric with the data of 1…n elements of a reference
statistics of another (or the same) metric within a logical storage area.

Format

CORRELATE

(statistics_name FROM metrix_name [ELEMENT] element_itemlist)
WITH

(statistics_name FROM metrix_name [ELEMENT] element_itemlist)
ALIAS alias_name DATE date

[WHERE] fiter_itemlist
[INTO] filename;

Description

This command calculates the correlation of the data of 1...n elements of a
source statistics of a metric with the data of 1…n elements of a reference
statistics of another (or the same) metric within a logical storage area.

Prerequisite:
The data files of the logical storage areas defined by the ALIAS and DATE clause
within the CORRELATE and WITH clause have to be attached in advance using
the ATTACH command.

DQL$ evaluates the clauses of the CORRELATE statement in the following order:

1. CORRELATE
 FROM
 ELEMENT

2. WITH
 FROM
 ELEMENT

3. ALIAS
4. DATE
5. WHERE
6. INTO

The CORRELATE clause specifies the statistics and the elements of the metric
that shall be correlated with the statistics and elements of the metric defined in
the WITH clause. The source statistics of all elements defined by the CORRELATE
clause is correlated with the reference statistics of all element in the WITH
clause. Both clauses start with an open bracket (“(“) and ends with a close
bracket (“)”).

CORRELATE

DO-DPDDQL-01A - 46 – Version 4.8

A source statistics for an element is valid if the statistics is member of the metric
defined by the FROM clause within the CORRELATE clause. A reference statistics
is valid if the statistics is member of the metric defined by the FROM clause
within the WITH clause. If either the source or a reference statistics does not
exist the command fails. To verify if the statistics are valid use the SHOW
STATISTICS command.

You can enter only one statistics (statistics_name) within the CORRELATE and
WITH clause.

The FROM clause in the CORRELATE and WITH clause specify the metric the
statistics defined belong to. The metrics defined must exist in the logical storage
area defined by the ALIAS and DATE clause. The FROM clause is mandatory.

The optional ELEMENT clause in the CORRELATE and WITH clause can be used to
filter the elements to be included in the correlation report. Enter the element
that shall be included in the correlation report as a comma (,), or OR sign (|)
separated list. Elements that should be excluded from the CORRELATE query
have to be preceded with the ‘!=’ or ‘<>’ tag in the comma separated list of the
ELEMENT clause. VSI PERFDAT V3.0and higher versions provide full wildcard
support. Asterisk (*) and percent sign (%) wildcard characters can be placed
anywhere within each string of the comma separated element list. If you enter
quotation marks at the beginning and the end of an element string the string is
taken literally (no wildcard operation performed on that string even if it
contains wildcard characters).

The ALIAS and DATE clause specifies the logical storage area the correlation
query applies to. The ALIAS clause contains the collection database alias and the
DATE clause the day of interest.

The database alias can’t be user-defined. DQL$ assigns the aliases when it starts
up automatically. The collection database aliases available are displayed when
you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

The optional WHERE clause can be applied to define additional filter criteria.
Enter the filter criteria as a comma separated list. A single filter criterion
consists of a valid statistics name, an operator and a comparison value. A
statistics name is valid if it is member of both metrics defined (FROM clause)
within the CORRELATE and the WITH clause. Since the TIME field (statistics) is
the only one that is common to all metrics, the TIME statistics is the only one
that can be entered in the WHERE clause to define the time period for
correlation processing. Valid operators are

 < less than

CORRELATE

DO-DPDDQL-01A - 47 – Version 4.8

 <= less than or equal
 = equal
 >= greater than or equal
 > greater than
 <> not equal
 != not equal

If the operator applied is <, <=, => or >only a single comparison value can be
entered. If the operator applied is =, != or <> you can enter a comparison value
list.

Example:
If you want to limit the query to the time period 25-AUG-200301:00 to 25-AUG-
200304:00 enter:

WHERE TIME >= 25-AUG-200301:00, TIME <= 25-AUG-200304:00

You can redirect the output of the query to a user definable CSV file if you apply
the optional INTO clause. If you omit the INTO clause the result of the query is
only displayed on screen.

Example

DQL> CORRELATE (iCpuLoad FROM PROCESS ELEMENT *)
cont> WITH (iCpuLoad FROM SYSTEM ELEMENT *)
cont> ALIAS HOBEL_DEFAULT DATE 30-AUG-2005
cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 30-AUG-200502:30;

Elements	OPENVMS
ACME_SERVER | 0.00 (100.00)
AUDIT_SERVER | 0.00 (100.00)
DNS$ADVER | 0.00 (100.00)
DQL$SRV_BG2148 | 98.70 (100.00)
DTSS$SERVICE | 0.00 (100.00)
ERRFMT | 3.77 (100.00)
FASTPATH_SERVER | 0.00 (100.00)
IPCACP | 0.00 (100.00)
JOB_CONTROL | 6.64 (100.00)
LANACP | 0.00 (100.00)
LATACP | 47.59 (100.00)
LES$ACP_V30 | 0.00 (100.00)
NET$ACP | 0.00 (100.00)
NET$EVD | 0.00 (100.00)
NET$MOP | 0.00 (100.00)
OPCOM | -20.33 (100.00)
PERFDAT | 99.29 (100.00)
PERFDAT_ARCHIVE | 6.64 (100.00)
PERFDAT_REPORT | 82.54 (100.00)
QUEUE_MANAGER | 0.00 (100.00)
REMACP | 6.64 (100.00)
SECURITY_SERVER | 80.95 (100.00)
SHADOW_SERVER | 0.00 (100.00)
SWAPPER | 0.00 (100.00)
SYSTEM | 0.00 (100.00)
TCPIP$INETACP | 0.00 (100.00)
TCPIP$PWIP_ACP | 0.00 (100.00)

CORRELATE

DO-DPDDQL-01A - 48 – Version 4.8

TP_SERVER | 11.81 (100.00)

In this example the CPU load (statistics iCpuLoad of metric PROCESS) data of all
processes (see ELEMENT clause within the CORRELATE clause) is correlated with
the system CPU load (statistics iCpuLoad of metric SYSTEM – the SYSTEM metric
contains only on element). The source logical storage area is 30-AUG-2005 of
the collection database HOBEL_DEFAULT (data collected on 30-AUG-2005 on
node HOBEL by a data collection stated with the DEFAULT profile). The time
range for correlating the data was limited to 30-AUG-200502:00 to 30-AUG-
200502:30 using the WHERE clause.

You can see from the output above that the processes PERFDAT and
DQL$SRV_BG2148 correlates the most with the overall CPU load on node HOBEL
between 30-AUG-200502:00 and 30-AUG-200502:30. The numbers in the
brackets displays the percentage of source element data used for the
correlation. E.g. LATACP – 100% of the CPU load data of the LATACP process are
used for correlating with the system CPU load data.

Be careful interpreting the result of the CORRELATION query. The correlation
coefficient is a measure for the equality of the curve shapes but no measure of
the amplitude of the curves. With other words you cannot conclude that if e.g.
the CPU load caused by process PERFDAT correlates the most with the overall
system CPU load that PERFDAT was a top consumer of the CPU resources. This
interpretation is wrong. To get the top consumers you have to apply the SHOW
ELEMENT command:

DQL> SHOW ELEMENT * FROM PROCESS
cont> ORDERD BY ICPULOAD DESCENDING
cont> ALIAS HOBEL_DEFAULT DATE 30-AUG-2005
cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 30-AUG-200502:30;

Done:
0%...7%...14%...21%...28%...35%...42%...50%...57%...64%...71%...78%...85%...92%...100%

 ELEMENT LIST of storage area

Element referes to Ratio
--
DQL$SRV_BG2148 75.6
PERFDAT_REPORT 20.8
PERFDAT 3.0
TP_SERVER 0.2
.
.

As you can see PERFDAT caused only 3% of the overall CPU load although the
curve shape of the CPU load data of process PERFDAT correlates the most with
the system CPU load.

CREATE GRAPH

DO-DPDDQL-01A - 49 – Version 4.8

CREATE GRAPH

This command selects data from collection databases and creates PNG
formatted line graphs that can be viewed directly with your WEB browser.

Format

CREATE GRAPH [STACKED] statistics_itemlist

FROM metric_name
ALIAS alias_name [DATE] date

[ELEMENT] element_name
[WHERE] filter_list

[INTO] directory
[NAME] graph_name

[STACKED_OVERLAY | SINGLE_SCALED];

Description

This command selects data from collection databases and creates PNG
formatted line graphs that can be viewed directly with your WEB browser. This
command facilitates automated WEB based graphing and data analysis.

The CREATE GRAPH command first selects data by executing a SELECT
statement extracted from the command input. This SELECT statement has the
format:

SELECT [STACKED] statistics_itemlist [FROM] metric_name

ALIAS alias_name [DATE] date
[ELEMENT] element_name [WHERE] filter_list;

The arguments used in the clauses of the SELECT statement are copied from the
appropriate arguments and clauses in the CREATE GRAPH command. For
detailed information about the following arguments and clauses please refer to
the SELECT command description:

 STACKED
 FROM
 ALIAS
 DATE
 ELEMENT
 WHERE

Both address modes (base address and direct address mode) to address data
fields (statistics) are supported (for more information about address mode
please refer to the SELECT command description). As with the EXPORT
statement statistics of different metrics can be addressed at once (see EXPORT
command description for more information).

CREATE GRAPH

DO-DPDDQL-01A - 50 – Version 4.8

The directory to store the graphs can be defined by use of the DIRECTORY
clause. If the DIRECTORY clause is omitted the PNG files are stored in
PERFDAT$GRAPH.

The data of all statistics defined within the CREATE GRAPH query are plotted
onto one graph automatically. If the user wants to plot the data of just one
statistic the CREATE GRAPH query has to contain this statistic only.

If the user applies the STACKED_OVERLAY keyword the selected data (statistics)
are plotted in stacked mode. If the Keyword is omitted the data is plotted in un-
stacked mode.

If the SINGLE_SCALED keyword is applied the selected data (statistics) plotted
onto a single graph can be individually scaled, so that data of different orders of
magnitude can be plotted on the same graph.

The SINGLE_SCALED and STACKED_OVERLAY keywords are mutual exclusive.

The maximum number of statistics that can be plotted into one graph is 16.

The NAME clause defines the name of the PNG file. If the NAME clause is
omitted a default name is used.

The caption of the graph can be redefined by applying the DEFINE HEADER
command in advance of this statement.

The user can customize the layout of the resulting graph via a configuration file.
The default configuration file is:

o PERFDAT$CFG:PERFDAT_CSV2PNG.CFG.

Table 4.1 PNG graph customization parameters

Parameter Values Description

AutoScaleLandscape TRUE / FALSE TRUE: the PNG file is auto-sized to A4
Landscape. AutoScaleLandscape takes
precedence over AutoScalePortrait

AutoScalePortrait TRUE / FALSE TRUE: the PNG file is auto-sized to A4
Portrait

GraphWidth Integer value [pixel] Width of the Graph drawing area. If
either AutoScaleLandscape or
AutoScalePortrait is set this parameter is
ignored.

GraphHeight Integer value [pixel] Height of the Graph drawing area. If
either AutoScaleLandscape or
AutoScalePortrait is set this parameter is
ignored

XMajorTicks  Auto Major ticks count of the X (time) axis

CREATE GRAPH

DO-DPDDQL-01A - 51 – Version 4.8

 Integer Value Auto: The time range displayed and the
major X axis ticks count is calculated
based on the selected time range in the
CREATE GRAPH query. Due to the
algorithm used it may happen that the
displayed time range is greater than the
time range defined in the query.

Integer Value: Manual selected major X
axis ticks count. In addition the time
range displayed is exactly the same as
defined by the CREATE GRAPH query.

FillGraphArea  FALSE
 TRUE

FALSE: line graphs are created

TRUE: the area under the lines plotted
for each statistics selected by the
CREATE GRAPH command are filled with
the selected line colors

YScaleMin  Auto
 Integer Value

Min. value of the Y-axis

Auto: Ymin is calculated based on the
data to display.

Integer Value: Ymin is set to the value
applied

YScaleMax  Auto
 Integer Value

Max. value of the Y-axis

Auto: Ymax is calculated based on the
data to display.

Integer Value: Ymax is set to the value
applied

YxMin (x = 1..16)  Auto
 Integer Value

Min. value of the Y-axis for the statistics
listed at position x in the CREATE GRAPH
command if the SINGLE_SCALED key
word is applied and the configuration
paramters YscaleMin and YScaleMax
both have the keyword Auto assigned.

Auto: Value Ymin for the statistic listed
at position x in the CREATE GRAPH query
is calculated based on the data to
display.

Integer Value: Value Ymin for the
statistics listed at position x in the
CREATE GRAPH query is set to the value
applied

YxMax (x = 1..16)  Auto
 Integer Value

Max. value of the Y-axis for the statistics
listed at position x in the CREATE GRAPH
command if the SINGLE_SCALED key
word is applied and the configuration
parameters YscaleMin and YScaleMax
both have the keyword Auto assigned.

Auto: Value Ymax for the statistic listed
at position x in the CREATE GRAPH query
is calculated based on the data to
display.

CREATE GRAPH

DO-DPDDQL-01A - 52 – Version 4.8

Integer Value: Value Ymax for the
statistics listed at position x in the
CREATE GRAPH query is set to the value
applied

LegendSorted  FALSE

 TRUE

FALSE: statistics in the legend of the
graph are listed in the same order as
they are listed in the CREATE GRAPH
command

TRUE: statistics in the legend of the
graph are listed in order of their average
values in the selected range.

LabelFont  gdTiny
 gdSmall
 gdMediumBold
 gdLarge
 gdGiant

Font of the X-, and Y-labels of the PNG
formatted graph:

 gdTiny
approx. 8 Pkt

 gdSmall
approx. 12 Pkt

 gdMediumBold
approx. 13 Pkt, Bold

 gdLarge
approx. 16 Pkt

 gdGiant
approx. 16 Pkt, Bold

LegendFont  gdTiny

 gdSmall

 gdMediumBold

 gdLarge

 gdGiant

Font of the legend of the PNG formatted
graph:

 gdTiny
approx. 8 Pkt

 gdSmall
approx. 12 Pkt

 gdMediumBold
approx. 13 Pkt, Bold

 gdLarge
approx. 16 Pkt

 gdGiant
approx. 16 Pkt, Bold

HeaderFont  gdTiny

 gdSmall

 gdMediumBold

 gdLarge

 gdGiant

Font of the header of the PNG formatted
graph:

 gdTiny
approx. 8 Pkt

 gdSmall
approx. 12 Pkt

 gdMediumBold
approx. 13 Pkt, Bold

 gdLarge
approx. 16 Pkt

 gdGiant
approx. 16 Pkt, Bold

GridEnable TRUE / FALSE TRUE: Grid will be displayed

FALSE: Now Grid will be displayed

GridColor  gdWhite
 gdBlack
 gdRed

Grid Color. You can select one of the
predefined colors listed below:

CREATE GRAPH

DO-DPDDQL-01A - 53 – Version 4.8

 gdBlue
 gdGreen
 gdYellow
 gdGray

 gdWhite = white
 gdBlack = black
 gdRed = red
 gdBlue = blue
 gdGreen = green
 gdYellow = yellow
 gdGray = gray

ImageBackgroundColor  gdWhite
 gdBlack
 gdRed
 gdBlue
 gdGreen
 gdYellow
 gdGray

Background Color of the PNG image. You
can select one of the predefined colors
listed below:

 gdWhite = white
 gdBlack = black
 gdRed = red
 gdBlue = blue
 gdGreen = green
 gdYellow = yellow
 gdGray = gray

GraphBorderColor  gdWhite
 gdBlack
 gdRed
 gdBlue
 gdGreen
 gdYellow
 gdGray

Graph border color. You can select one
of the predefined colors listed below:

 gdWhite = white
 gdBlack = black
 gdRed = red
 gdBlue = blue
 gdGreen = green
 gdYellow = yellow
 gdGray = gray

HeaderColor  gdWhite
 gdBlack
 gdRed
 gdBlue
 gdGreen
 gdYellow
 gdGray

Color of the header string. You can
select one of the predefined colors listed
below:

 gdWhite = white
 gdBlack = black
 gdRed = red
 gdBlue = blue
 gdGreen = green
 gdYellow = yellow
 gdGray = gray

LineColorX (X…1 to 16) Any valid RGB triple Up to 16 line graphs can be displayed
within a single PNG image. The color of
these line graphs can be freely defined
by assigning the appropriate RGB-triple
to these parameters. LineColor1 refers
the color of the 1. line graph, LineColor2
refers the color of the 2. line graph and
so on.

The recommended way to customize the graphs created by the CREATE GRAPH
command is to copy the default configuration file, modify the configuration
parameters therein and apply the DEFINE GRAPH_CFG command in advance of
the CREATE GRAPH command to advise the DQL$ utility to use the configuration
file addressed by the DEFINE GRAPH_CFG command.

CREATE GRAPH

DO-DPDDQL-01A - 54 – Version 4.8

Do not change the default configuration file as the default configuration file may
be replaced by future VSI PERFDAT releases. Hence, any changes in the
parameters in the default configuration file may be lost after upgrading VSI
PERFDAT.

Control Logical

PERFDAT$SCRATCH

During command execution temporary CSV files are created. The default
directory to store these temporary CSV files is PERFDAT$GRAPH. If the user who
executes the CREATE GRAPH command is not owner of the PERFDAT$GRAPH
directory audit alerts are triggered.

To avoid such audit alerts the directory to store the temporary CSV files can be
user-defined. If the logical PERFDAT$SCRATCH exists and if it refers a valid
directory all temporary CSV files created by the CREATE GRAPH command are
stored in this directory.

The logical PERFDAT$SCRATCH has to be defined system-wide:

 $ DEFINE/SYSTEM PERFDAT$SCRATCH directory

Example

Example 1

Attach the logical storage area:

DQL> ATTACHALIAS WSSPQ_DEFAULT DATE 29-APR-2006;
DQL-I-ATTACH, successfully attached file /WSSPQ_DEFAULT_2006-04-29:00:00:30:1/

Define the graph caption:

DQL> DEFINE HEADER “Total CPU Load & User Mode”;

Create Graph:

DQL> CREATE GRAPH iCpuLoad, iUser FROM SYSTEM
cont> ALIAS WSSPQ_DEFAULT DATE 29-APR-2006
cont> INTO 1DKB100:[TEST_GRAPH] NAME CPUMODE;

DQL-I-GRAPH, Graphs created
 PNG file(s): CPUMODE.PNG
 Files are moved to directory: 1DKB100:[TEST_GRAPH]

In this example line graphs for the overall CPU load und the user mode CPU load
are plotted onto one graph. The PNG file is created in the directory
1DKB100:[TEST_GRAPH]. The name of the PNG file is user-defined since the

CREATE GRAPH

DO-DPDDQL-01A - 55 – Version 4.8

NAME clause is present. To view the graph access the CPUMODE.PNG file using
your web-browser.

Example 2

This example demonstrates the use of the un-stacked form of the CREATE
GRAPH query using the direct address mode (see EXPORT command description)
to select data from different sources (collection databases / logical storage
areas defined by the ALIAS and DATE clause) and the selected statistics and
metrics do not exist in all collection data files.

We want to create a graph that displays the I/O rate of all FC-adapters of the
system VMSTM1 and the throughput of the FC-switches these adapters are
connected. VMSTM1 has two FC- adapters FGA and FGB. FGA is connected to
Port_1. The user-defined name of the graph is IOPATH.PNG.

DQL> ATTACH ALIAS VMSTM1_DEFAULT DATE 26-NOV-2007;
DQL> ATTACH ALIAS FC-SWITCH1_DEFAULT DATE 26-NOV-2007;
DQL> ATTACH ALIAS FC-SWITCH2_DEFAULT DATE 26-NOV-2007;

DQL> DEFINE HEADER “VMSTM1 FC-I/O rate & Switch throughput”

DQL> CREATE GRAPH IOPATHES.iOpCnt, PORT.TotWordsALIAS
cont> VMSTM1_DEFAULT, FC-SWITCH1_DEFAULT, FC-SWITCH2_DEFAULT
cont> DATE 26-NOV-2007 ELEMENT FG* | PORT_0
cont> NAME IOPATH;

Example 3:

CREATE GRAPH

DO-DPDDQL-01A - 56 – Version 4.8

In the following example the disk throughput (iDiskMB) and the disk I/O rate
(iDiskIO) of the SYSTEM metric are plotted onto the same graph once with the
SINGLE_SCALED applied.

DQL> ATTACH ALIAS VMSTM1_DEFAULT DATE 9-JUN-2008;
DQL> CREATE GRAPH iDiskIO, iDiskMB FROM SYSTEM ALIAS
cont> VMSTM1_DEFAULTDATE 9-JUN-2008
cont> WHERE TIME > 9-JUN-2008 10:30, TIME < 9-JUN-2008 11:00
cont> NAME SAME_SCALE SINGLE_SCALED;

DQL-I-GRAPH, Graphs created
 PNG file(s): SINGLE_SCALED.PNG
 Files are moved to directory: PERFDAT$GRAPH

The disk throughput ranges from 0 to 4.6 Mbytes/sec. The disk I/O rate ranges
from 0 to 1180 I/Os per second. Thus, without applying the SINGLE_SCALE
keyword the disk throughput would be almost invisible.

CREATE METRIX

DO-DPDDQL-01A - 57 – Version 4.8

CREATE METRIX

This command creates a metric (table) in a physical storage area.

Format

CREATE METRIX metric_name

IN STORAGE AREA filename_alias
[FROM] descriptor_file ;

Description

This command creates a metric (table) in a physical storage area.

The metric_name specifies the name of the new metric (table) to create in the
physical storage area defined by the IN STORAGE AREA clause. If the metric
already exists in the physical storage area defined the command fails.

Each metric (table) contains a record descriptor of the records stored in the
metric. The optional DESCRIBED BY clause specifies the descriptor file containing
the record descriptor valid for the newly created metric. This clause can be
omitted if the metric name applied matches one of the OpenVMS metrics

 System
 CPU
 Process
 User
 Image
 Account
 Device
 Device.IOSize
 Device.File
 Device.Process
 Device.Process.File
 Device.Capacity
 Device.Path
 IOPathes
 XFCVolume
 XFCVolume.IOSize
 XFCVolume.File
 XFCVolume.File.IOSize
 LANAdapter
 LANAdapter.Device
 LANProtocol
 SCSPort

CREATE METRIX

DO-DPDDQL-01A - 58 – Version 4.8

 SCSPort.VC
 SCSPort.VC.Channel

In this case the record descriptor is fetched from the PERFDAT configuration
database.

Any valid record descriptor has to contain at least one statistics (data field)
called TIME that contains the timestamp of the records stored in the metric. The
maximum number of statistics (data fields) defined by a record descriptor is
200. If record descriptor exceeds the maximum number of statistics or it
contains no TIME data field the command fails.

For detailed information about record descriptors and descriptor files please see
the descriptor file section of the MAP command description.

Example

DQL> CREATE METRIX SPHINX
cont> IN STORAGE AREA SPHINX_DEFAULT_2005-08-25:00:00:00:1
cont> FROM PERFDAT$CFG:SPHINX_DSC.CFG;
DQL-I-CREATE, successfully created Metrix /SPHINX/

This example shows how to add a new metric (table) to the physical storage
area referred by the filename alias SPHINX_DEFAULT_2005-08-25:00:00:00:1
(see the CREATE STORAGE AREA command example how to create this physical
storage area). The name of the new metric is SPHINX. The descriptor file of the
metric is PERFDAT$CFG:SPHINX_DSC.CFG.

Content of the descriptor file PERFDAT$CFG:SPHINX_DSC.CFG:

METRIX_SPHINX:

 Time: FIELD$_DATETIME:8: Time : [s]:
PART9 Ges: FIELD$_FLOAT: 4: Partion 9 Gesamt TA: [1/s]:
PART9 ACK: FIELD$_FLOAT: 4: Partion 9 Ack TA: [1/s]:
 PART9 NAK: FIELD$_FLOAT: 4: Partion 9 Nack TA: [1/s]:
PART10 Ges: FIELD$_FLOAT: 4: Partion 10 Gesamt TA: [1/s]:
PART10 ACK: FIELD$_FLOAT: 4: Partion 10 Ack TA: [1/s]:
 PART10 NAK: FIELD$_FLOAT: 4: Partion 10 Nack TA: [1/s]:
PART11 Ges: FIELD$_FLOAT: 4: Partion 11 Gesamt TA: [1/s]:
PART11 ACK: FIELD$_FLOAT: 4: Partion 11 Ack TA: [1/s]:
 PART11 NAK: FIELD$_FLOAT: 4: Partion 11 Nack TA: [1/s]:
PART12 Ges: FIELD$_FLOAT: 4: Partion 12 Gesamt TA: [1/s]:
PART12 ACK: FIELD$_FLOAT: 4: Partion 12 Ack TA: [1/s]:
 PART12 NAK: FIELD$_FLOAT: 4: Partion 12 Nack TA: [1/s]:
 Request Ges: FIELD$_FLOAT: 4: Gesamt TA: [1/s]:
 GES ACK: FIELD$_FLOAT: 4: Gesamt Ack TA: [1/s]:
 GES NAK: FIELD$_FLOAT: 4: Gesamt Nack TA: [1/s]:

METRIX_SPHINX_END:

CREATE STORAGE AREA

DO-DPDDQL-01A - 59 – Version 4.8

CREATE STORAGE AREA

This command creates a new physical storage area (data file).

Format

CREATE STORAGE AREA alias_name [OSTYPE] os_name

FILENAME file_name TIMERANGE FROM start_time TO stop_time
SAMPLE INTERVAL time_in_sec

ALLOCATION allocsize_in_blks BLOCKS
[TYPE] { COLLECTION | TREND };

Description

This command creates a new physical storage area (data file).

To create a physical storage some basic parameters have to be applied in order
the newly created data file becomes part of the distributed collection database.

The alias_name parameter specifies the collection database alias the newly
created data file belongs to. A collection database alias has the format:

NodeName_CollectionProfile

No restriction exists for the input. Neither the NodeName string has to match
with an existing node in your environment nor has the CollectioProfile string to
match with an existing collection profile in the collection profile table of the
PERFDAT configuration database. Thus, the alias_name is freely definable.

The optional OSTYPE clause defines the type of data that will be stored in the
newly created physical storage area. Since performance data collected are
operating system dependent typically an operating system name (OpenVMS,
Tru64, HP-UX …) is entered. However you can enter any string that does not
exceed 12 characters that characterizes the data stored the most. Since this
value is internally treated as informational data it has no effect but on the
output of the SHOW HEADER command. If the OSTYPE string is not “OpenVMS”
the SHOW HEADER command displays no summary information about the
metrics stored in the physical storage area. In this case you have to apply the
SHOW METRIX command explicitly to display the metrics stored in the physical
storage area. The default is OpenVMS.

The FILENAME clause specifies the file name of the newly created physical
storage area. Enter the file name without directory information. The CREATE
command automatically creates the new data file in the directory
PERFDAT$DB_LOCAL or PERFDAT$DB_TREND. It depends on the keyword used
in the TYPE clause:

CREATE STORAGE AREA

DO-DPDDQL-01A - 60 – Version 4.8

 TYPE clause missing
The new data file will be stored in PERFDAT$DB_LOCAL.

 COLLECTION keyword used
The new data file will be stored in PERFDAT$DB_LOCAL.

 TREND keyword used
The new data file will be stored in PERFDAT$DB_TREND.

The TIMERANGE clause defines the time range data the physical storage area is
valid for. If the timestamp of a data record is covered by into the time range of a
physical storage area it can be inserted in case the metric the record belongs to
exists. If the timestamp of the record is outside the time range of the physical
storage area the insert operation is blocked.

One of the key control parameters for the OpenVMS data collector and the
SNMP extension is the sample interval. In order to create a PERFDAT compliant
physical storage area manually a sample interval in seconds has to be defined
too. The SAMPLE INTERVAL clause is used to enter that sample interval in
seconds. The sample interval is also important if you want to load CSV data into
the newly created, empty physical storage area. The sample interval of the
physical storage area should match the sample intervals defined by the
timestamps in the CSV file. No duplicate inserts are allowed for data files of the
PERFDAT distributed database. If the sample interval of the data records in a
load CSV file differs from the sample interval defined in the physical storage
area significantly data insert may fail due to duplicates.

For detailed information about CSV data load see the LOAD command
description.

The ALLOCATION clause terminated by the BLOCKS keyword defines the initial
file size of the new data file in blocks.

The optional TYPE clause defines the directory where to create the new physical
storage area. If the TYPE clause is omitted or the COLLECTION keyword is
entered, the new data file is created in the directory PERFDAT$DB_LOCAL. If the
TREND keyword is applied the new data file is created in the directory
PERFDAT$DB_TREND.

Example

DQL> CREATE STORAGE AREA SPHINX_DEFAULT
cont> FILENAME SPHINX_25082005.DAT
cont> TIMERANGE FROM 25-AUG-200500:00 TO 26-AUG-200500:00
cont> SAMPLE INTERVAL 300 ALLOCATION 500 BLOCKS
cont> TYPE COLLECTION;
DQL-I-CREATE, successfully created storage area /PERFDAT$SPECIFIC:[DB]SPHINX_25082005.DAT_69238;1/
 alias /SPHINX_DEFAULT_2005-08-25:00:00:00:1/

CREATE STORAGE AREA

DO-DPDDQL-01A - 61 – Version 4.8

This example shows how to create a new physical storage area. The newly
create physical storage area is member of the collection database
SPHINX_DEFAULT. The sample interval is 300 sec. The initial file size is 500
blocks. The physical storage area is valid to store data records containing
timestamps between 25-AUG-200500:00and26-AUG-200500:00. Since the data
file type is COLLECTION the physical storage area is created in the directory
PERFDAT$DB_LOCAL (PERFDAT$SPECIFIC:[DB]);

DEATTACH ALIAS

DO-DPDDQL-01A - 62 – Version 4.8

DEATTACH ALIAS

This command disconnects (closes) a previously attached (opened) collection
database or logical storage area.

Format

DEATTACH ALIAS alias_name [DATE date];

Description

This command disconnects (closes) a previously attached (opened) collection
database or logical storage area. The command syntax is equivalent to the
ATTACH ALIAS command.

For detailed information about the command syntax please see the ATTACH
ALIAS command description.

Examples

Example 1

This is example shows how to disconnect from a collection database.

DQL> DEATTACH ALIAS VNOABS_2MIN;
DQL-I-ATTACH, successfully deattached file /VNOABS_2MIN_2003-SEP-19:00:03:00/
.
.
.
DQL-I-ATTACH, successfully deattached file /VNOABS_2MIN_2003-SEP-25:00:03:00/

In this example the collection database referenced by the alias VNOABS_2MIN
(= sum of all data files that have been created by performance collections
started with the collection profile 2MIN on node VNOABS) is disconnected
(closed).

Example 2

This is an example how to disconnect (close) from a logical storage area.

DQL> DEATTACH ALIAS VNOABS_2MIN DATE 19-SEP-2003;
DQL-I-ATTACH, successfully deattached file /VNOABS_2MIN_2003-SEP-19:00:03:00/
DQL-I-ATTACH, successfully deattached file /VNOABS_2MIN_2003-SEP-19:15:03:00/

In this example the connection to the logical storage of the collection database
referenced by the alias VNOABS_2MIN containing the data files of 19-SEP-
2003is closed. The logical storage area consists of two physical storage areas

DEATTACH ALIAS

DO-DPDDQL-01A - 63 – Version 4.8

(data files)(VNOABS_2MIN_2003-SEP-19:00:03:00 and VNOABS_2MIN_2003-
SEP-19:15:03:00).

DEATTACH FILE

DO-DPDDQL-01A - 64 – Version 4.8

DEATTACH FILE

This command disconnects (closes) a previously attached (opened) physical
storage area.

Format

DEATTACH 'FILE filename_alias';

Description

This command disconnects (closes) a previously attached (opened) physical
storage area. The command syntax is equivalent to the ATTACH FILE command.

For detailed information about the command syntax please see the ATTACH FILE
command description.

Example

DQL> DEATTACH 'FILE VNOABS_2MIN_2003-SEP-18:20:43:00';
DQL-I-ATTACH, successfully deattached file /VNOABS_2MIN_2003-SEP-18:20:43:00/

In this example the connection (channel) to the physical storage area of the
collection database VNOABS_2MIN (node: VNOABS, collection profile: 2MIN)
created on 18-SEP-200320:43:00 is closed.

DEFINE DATA HOST

DO-DPDDQL-01A - 65 – Version 4.8

DEFINE DATA HOST

The DEFINE DATA HOST command defines the node that shall host the data files
created during the current DQL$ session.

Format

DEFINE DATA HOST node_name;

Description

The DEFINE DATA HOST command defines the node that shall host the data files
created during the current DQL$ session. The user can define any member of the
community the local node is member of and the archive node if configured on the
local node.

It is a prerequisite that the node defined by the node_name parameter has VSI
PERFDAT V3.3 or any higher version installed. If this is not the case the command
fails.

Once the command has been successfully executed any subsequent EXTRACT and
CREATE STORAGE AREA command of the DQL$ utility creates data files on the target
node defined by the node_name parameter.

Prior to VSI PERFDAT V3.3 data files created by the EXTRACT and CREATE STORAGE
AREA command of the DQL$ utility were always created on the local node. This is
the default when you start a new DQL$ session.

Example

Assume you are running a DQL$ session on node VMSTM1. The PERFDAT
community defined on VMSTM1 consists of VMSTM1 and HOBEL. The archive node
for VMSTM1 is VMSTM4. In order to redirect the file creation of data files to the
archive node, enter the command sequence as listed below.

DQL> DEFINE DATA HOST VMSTM4;
DQL-I-DATAHOST, data file creation has been successfully redirected to node /VMSTM4/

DQL> CREATE STORAGE AREA SPHINX_DEFAULT
cont> FILENAME SPHINX_25082005.DAT
cont> TIMERANGE FROM 25-AUG-200500:00 TO 26-AUG-200500:00
cont> SAMPLE INTERVAL 300 ALLOCATION 500 BLOCKS
cont> TYPE COLLECTION;
DQL-I-CREATE, successfully created storage area

/PERFDAT$SPECIFIC:[DB]SPHINX_25082005.DAT_51993;1/
alias /SPHINX_DEFAULT_2005-08-25:00:00:00:1/ on node VMSTM4.

DEFINE ELEMENT

DO-DPDDQL-01A - 66 – Version 4.8

DEFINE ELEMENT

When a stacked element report or a stacked deviation report is created these
reports contain the calculated values for a single (stacked) element. This stacked
element name can be (re)defined by applying the DEFINE ELEMENT command in
advance of the CALCULATE statement.

Format

DEFINE ELEMENT element_name;

Description

When a stacked element report or a stacked deviation report is created these
reports contain the calculated values for a single (stacked) element. This stacked
element name can be redefined by applying the DEFINE ELEMENT command in
advance of the CALCULATE statement.

The string length of the element name is limited to 64 characters.

For more information please see the CALCULATE command descriptions.

Examples

See CALCULATE command description and examples.

DEFINE GRAPH_CFG

DO-DPDDQL-01A - 67 – Version 4.8

DEFINE GRAPH_CFG

This DEFINE GRAPH_CFG command defines the configuration file to be used for
subsequent CREATE GRAPH commands.

Format

DEFINE GRAPH_CFG cfg_filename;

Description

The CREATE GRAPH command facilitates automated WEB based graphing and
data analysis from the DQL$ command line. The layout of the graphs created by
the CREATE GRAPH command can be customized by several parameters stored
in a configuration file. You can define several configuration files on your own.

This DEFINE GRAPH_CFG command defines the configuration file to be used for
subsequent CREATE GRAPH commands. The cfg_filename has to address an
existing graph configuration file. If the file name defined by the cfg_filename
parameter does not exist the command fails and the default configuration file:

PERFDAT$CFG:PERFDAT_CSV2PNG.CFG
will be used for subsequent CREATE GRAPH commands.

If you want to create graphs from the DQL$ utility with user-defined settings
apply the DEFINE GRAPH_CFG command in advance of the CREATE GRAPH
command.

For detailed information about the configuration parameters available please
refer to the CREATE GRAPH command description.

Examples

See the CREATE GRAPH command description and examples.

DEFINE HEADER

DO-DPDDQL-01A - 68 – Version 4.8

DEFINE HEADER

If data are exported to a CSV file the header line (comment) of that file and the
caption of a graph created by applying the CREATE GRAPH command can be
user-defined. This is done by applying this command in advance of the EXPORT
and CREATE GRAPH command.

Format

DEFINE HEADER “header string”;

Description

If data are exported to a CSV file the header line (comment) of that file and the
caption of a graph created by applying the CREATE GRAPH command can be
user-defined. This is done by applying this command in advance of the EXPORT
and CREATE GRAPH command.

Use quotation marks to terminate the header (caption) string. The maximum
length of the header string is 2048 characters.

For more information please see the CREATE GRAPH and EXPORT command
description.

Examples

See the CREATE GRAPH and EXPORT command description and examples.

DEFINE PROCEDURE

DO-DPDDQL-01A - 69 – Version 4.8

DEFINE PROCEDURE

This command is used to define side specific, calculated statistics (measures)
that can, once defined, be accessed as if they are part of the associated metrics
of the collection databases available.

Format

DEFINE PROCEDURE equation

METRIX metric_name
OSTYPE OS_name
 DESCRIPTION description_text
 UNIT unit_text

[NODE node_name];

Description

This command is used to define side specific, calculated statistics (measures)
that can, once defined, be accessed as if they are part of the associated metrics
of the collection databases available.

The equation parameter defines the user-defined statistics. Enter an equation.
The name of the user-defined statistics to be created has to be entered and on
the left and a valid function (procedure) that is used to calculate it on the right
of the equal sign. E.g.:

$iCpuNorm = iCpuLoad / iCpuCnt

User-defined statistics are marked with a dollar ($) sign in front to indicate that
they are calculated statistics. The user can, but doesn’t have to, enter the dollar
($) sign when defining the stored procedure. If the dollar sign is omitted it is
automatically assigned.

Statistics collected by the OpenVMS data collector or the SNMP extension,
existing user-defined statistics and constant values can be used within the
function (procedure) assigned. The supported operators are +, -, * and /. All
variables used within the function assigned (statistics collected by the OpenVMS
data collector or the SNMP extension, existing user-defined statistics) have to
be member of the same metric as defined by the METRIX clause. Otherwise the
command fails.

The metric_name parameter defined the METRIX the newly created user-
defined statistics is member of.

The OS_name parameter in the OSTYPE clause defines the operating system the
metric defined by the metric_name parameter is valid for.

DEFINE PROCEDURE

DO-DPDDQL-01A - 70 – Version 4.8

The DESCRIPTION clause is used to briefly describe the new user-defined
statistics. The string entered will be displayed when applying the SHOW
STATISTICS command. Maximum length of the string is 64 characters. If you
enter the string with parenthesis the string is stored case sensitive. Otherwise
the string will be converted to upper case.

The UNIT clause is used to enter the unit of the user-defined statistics.
Maximum length of the string is 16 characters. If you enter the string with
parenthesis the string is stored case sensitive. Otherwise the string will be
converted to upper case.

If the keyword applied to the OS_name parameter is one of the systems
supported by any of the components of VSI PERFDAT (OpenVMS data collector,
SNMP extension, EVA extension, RDB performance data import utility, CACHE
data performance data import utility, VSI PERFDAT API):

 OpenVMS
 TRU64
 EVA
 Brocade
 Solaris
 Linux
 RDB
 CACHE
 The name of any application that uses the VSI PERFDAT API to insert

data into the distributed VSI PERFDAT performance data base
the DQL$ utility performs several checks before creating the user-defined
statistics:

 Checks if all statistics defined within the function (procedure) assigned
to the user-defined statistics exist

 Checks the syntax of the function (procedure) assigned
o Checks if supported operators (+, -, *, /) are applied only
o Checks if all brackets are present

If one of these checks fails the user-defined statistics will not be created.

If an unknown keyword is assigned to the OS_name parameter the user is
prompted to confirm the creation of the user-defined statistics. If the user
confirms the creation the user-defined statistics is created unconditionally.

All clauses and parameters of the command except the NODE clause are
mandatory.

Stored procedures can be defined generic or node specific. If you omit the
NODE clause the user-defined statistics is generic. If you apply a node name
using the NODE clause the user-defined statistics is node specific.

DEFINE PROCEDURE

DO-DPDDQL-01A - 71 – Version 4.8

A generic user-defined statistics is valid for all performance databases accessible
within the PERFDAT community the local node is member of and that contains
the metric defined by the metric_name parameter and that contains
performance data of the system defined by the OS_name parameter.

Node specific user-defined statistics are only valid for the specified metric
stored in performance databases created on/for a specific node. If a node
specific user statistics is defined this statistics can be accessed only if the user
requests data from a performance database the node name field in the
database header matches the node name string of the user-defined statistics
(stored procedure).

Due to the generic/node specific statistics concept user-defined statistics with
the same name can be defined that refer different formulas. If you define
statistics with the same name with different formulas assigned as a generic and
as a node specific user-defined statistics the node specific definition is used to
calculate the statistics if you request data from a performance database that
match the node criteria. If the node name field in the header of the
performance database does not match the node name the node specific user
statistics refers to the generic definition is used to calculate the user-defined
statistics.

Once the command succeeded the statistics will be immediately accessible by
all users accessing the distributed PERFDAT performance database via one of
the nodes that share the same PERFDAT configuration database, since user-
defined statistics and their parameter are stored in the stored procedure table
of the PERFDAT configuration database. The only reason for having no access to
a user-defined statistics is that some statistics defined within the function
assigned to the user-defined statistics does not exist in the collection database
the users are attached to.

There are several reasons to use this feature. Here are some examples:
 This feature is important in case you want to normalize data.
 You can use this feature to create special statistics you are interested in if

these statistics are not directly collected by the OpenVMS data collector or
the SNMP extension but all input parameters to compute it are available.

Examples

Example 1:

This example shows how to normalize data by defining a user-defined statistics.

The statistics for the system wide CPU load collected by the OpenVMS data
collector ranges from 0 to 100% * number of CPUs. Thus, if you are monitoring a
system with 8 CPUs the statistics for the system wide CPU load collected by the

DEFINE PROCEDURE

DO-DPDDQL-01A - 72 – Version 4.8

OpenVMS data collector ranges from 0 … 800 %. In order to fetch normalized
data of the system wide CPU load ranging from 0 … 100 % create a user-defined
statistics. In this example the user-defined statistics is named $iCpuNorm, but
you can choose any other name.

DQL> DEFINE PROCEDURE $iCpuNorm = iCpuLoad / iCpuCnt METRIX SYSTEM
cont> OSTYPE OpenVMSDESCRIPTION “CPU load normalized” UNIT “[%]”;
DQL-I-PROC, generic stored procedure /$iCpuNorm/ for metric /SYSTEM/,

OS Type /OPENVMS/ defined

Once defined the user-defined statistics $iCpuNorm can be fetched from any
attached collection database created by the OpenVMS data collector in case the
data of the statistics iCpuLoad and iCpuCnt exist are stored in these collection
databases.

Since the NODE clause is omitted this user-defined statistics is generic (valid for
the system metric of any OpenVMS performance database)

Example 2:

This example demonstrates how to create special statistics you are interested in
if these statistics are not directly collected by the OpenVMS data collector or the
SNMP extension but all input parameters to compute them are available.

The average I/O size of disk I/Os is not collected by the OpenVMS data collector
but the number of I/Os to the device (iIOs) and the throughput (iMBs) is
collected. Thus you can define the average I/O size statistics on your own:

DQL> DEFINE PROCEDURE $iIOSize = iMbs / iIOs * 1024 METRIX DEVICE
cont> OSTYPE OpenVMS DESCRIPTION “Average I/O size” UNIT “[kB]”
cont> NODE VMSTM1;
DQL-I-PROC, node specific stored procedure /$iIOSize/ for metric /DEVICE/,

OS Type /OPENVMS/,
Node /VMSTM1/ defined

Since the unit of the throughput is MB/s it is not simply divided by the number
of I/Os but also multiplied by 1024 in order to have the user-defined statistics
scaled to kByte.

The NODE name clause is applied. Thus, this user-defined statistics is only
accessible via the system metric if the user requests data from an OpenVMS
performance database that were created by the OpenVMS data collector on
node VMSTM1.

DEFINE REGION

DO-DPDDQL-01A - 73 – Version 4.8

DEFINE REGION

This command invokes the regional options wizard to define regional settings.

Format

DEFINE REGION reg_name;

Description

This command invokes the regional options wizard to define regional settings.

Regional settings define the list separator, the format of numbers, date and
time of the CSV files that are mapped, loaded or imported to the distributed
PERFDAT performance database as well as how the DQL$ utility formats
numbers, date, time and the list separator when exporting performance data to
CSV files.

Defining regional settings increases the flexibility to map, load or import CSV
files from different sources without any format preprocessing. In addition data
can be exported to CSV files using the format expected by the target system to
transfer the CSV file.

The reg_name parameter defines the name of the regional settings to be
defined by the regional options wizard. You can enter any string. Blanks are
allowed. Maximum length of the string is 56 characters. If you enter the
parameter with parenthesis the string is stored case sensitive. Otherwise the
string will be converted to upper case.

The newly created regional setting is stored in the regional setting table of the
PERFDAT configuration database. Thus, once a regional setting is defined it is
valid for all nodes sharing the same PERFDAT configuration database.

Note

This command just creates a new regional setting but does not affect the
default regional setting of the current DQL$ session. To switch the default
regional setting of the current DQL$ session use the SET REGION command.

Example

In this example regional settings “German” is defined. Since the regional name
is entered with parenthesis it is stored case sensitive.

DQL> DEFINE REGION "German";

 Name: German

DEFINE REGION

DO-DPDDQL-01A - 74 – Version 4.8

Enter Decimal Symbol [.]: , 
 Enter List Seperator [,]:;

 Enter the day format:
 d defines the day format (minimum number of day digits)
m defines the month format. If you assign mmm the month is
displayed textual (JAN, FEB, MAR ...). Otherwise the month
is displayed numerical (e.q. m -> 1, 9, 10; mm -> 01, 09, 10)
 y defines the year format (number of year digits)

Enter Date Format [dd-mmm-yyyy]:
Enter month desriptors as a comma seperated list [e.g. JAN, FEB, ...]
 Enter List: [JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC]:
JAN,FEB,MAR,APR,MAI,JUN,JUL,AUG,SEP,OKT,NOV,DEZ

DQL-I-CFGSUCCESS, successfully defined region setting /German/
 To use it as default for the session use the SET REGION command.

DEFINE VIEW

DO-DPDDQL-01A - 75 – Version 4.8

DEFINE VIEW

This command creates a cluster view. A cluster view maps performance data of
different nodes for cluster wide performance analysis.

Format

DEFINE VIEW view_name ALIAS alias_namelist;

Description

This command creates a cluster view. A cluster view maps performance data of
different nodes for cluster wide performance analysis.

The view_name parameter defines the name of the cluster view to be created.
Enter a name that characterizes the cluster view the most. Once a cluster view is
created a virtual collection database is accessible that maps the data of the
cluster view members. The alias assigned to that virtual collection database is:

view_name_VIEW

The newly created virtual collection database of the cluster view can be
accessed using the database alias shown above in the same way as any
collection database created by the OpenVMS data collector or SNMP extension.
For more information about the distributed performance database and
database organization please see the chapters VSI PERFDAT distributed
performance database and VSI PERFDAT Query Interface (DQL)or the manual
VSI PERFDAT - Architecture and Technical Description.

The alias_namelist parameter lists the members of the newly created cluster
view. Any existing collection databases created by the OpenVMS data collector,
the SNMP extension or the auto-trend engine can be added to a cluster view.
Enter the collection databases as a comma separated list.

Prerequisites for defining cluster views are:

 All collection databases addressed by the alias_namelist parameter exist
and there exists at least one matching logical storage area within each
of these collection databases. With other words, for at least one day
performance data have to exist in all collection databases addressed.

 All collection databases addressed by the alias_namelist were created
with the same sample interval.

If one of these checks fail the configuration request is rejected.

Cluster view definitions are node specific. Thus, a cluster view is visible to those
users only that are connected to the distributed PERFDAT performance data via
the same node the cluster view was configured.

DEFINE VIEW

DO-DPDDQL-01A - 76 – Version 4.8

Once the command succeeds the newly created cluster view is immediately
accessible by all users connected to the same node this command was applied.

The advantage of defining cluster views is that the virtual collection database of
a cluster view can be accessed in the same way by the DQL$ utility and the
PERFDAT GUI as if it is a collection database created by the OpenVMS data
collector or the SNMP extension. Thus, all methods and features to analyse
performance data of single nodes are available for cluster views too.
Consequently the workflow for cluster analysis does not differ from the
workflow to analyse single node performance data.

Although in most cases cluster views will be created for cluster wide
performance data analysis of OpenVMS clusters there exists no restriction that
performance collection databases of OpenVMS cluster members only can be
members of a cluster view. Any collection database of any node available can be
added to a cluster view as long as these collection databases fulfil the criteria
mentioned above.

Example

This example shows how to create a cluster view for an OpenVMS cluster. The
OpenVMS cluster consists of three nodes:

 BCSXTC
 VMSTM1
 VMSTM4

PERFDAT is up and running on all three nodes and a performance collection
started with the DEFAULT collection profile is active on each node. The cluster
name of the OpenVMS cluster is VIECLU.

To create a cluster view for the cluster members enter:

DQL> DEFINE VIEW VIECLU
cont> ALIAS BCSXTC_DEFAULT, VMSTM1_DEFAULT, VMSTM2_DEFAULT;
DQL-I-VIEW, view /VIECLU/ defined

Once the command succeeded the virtual collection database that maps the
assigned collection databases can be accessed immediately for cluster analysis.
The alias VIECLU_VIEW addresses the virtual collection database of the new
cluster view.

DROP ALIAS

DO-DPDDQL-01A - 77 – Version 4.8

DROP ALIAS

This command drops (deletes) a logical storage area or a whole collection
database.

Format

DROP ALIAS alias_name [DATE date];

Description

This command drops (deletes) a logical storage area or a whole collection
database depending if the optional DATE clause is specified or not.

The ALIAS clause specifies the alias of the collection database to delete. That
database alias can’t be user-defined. DQL$ assigns these aliases when it starts
up automatically. The collection database aliases available are displayed when
you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If you want to delete a logical storage area (all data files that have been created
on the same day) of a collection database, the DATE clause is mandatory. Use
OpenVMS date format to define the day of interest. If you omit the DATE clause
all data files (physical storage areas) of the collection database defined by the
ALIAS clause are deleted.

Logical storage areas/collection databases can be deleted if they are not
connected by any DQL$ or PDBC$SRV session. Otherwise the command fails.

Example

This example shows how to drop (delete) a logical storage area from the
collection database SPHINX_DEFAULT.

DQL> DROP ALIAS SPHINX_DEFAULT DATE 25-AUG-2005;
DQL-I-DELNAME, removing /SPHINX_DEFAULT_2005-08-25:00:00:00:1/ from DQL name
cache on node VMSTM1
DQL-I-DELNAME, removing /SPHINX_DEFAULT_2005-08-25:00:00:00:1/ from DQL name
cache on node VMSTM4
DQL-I-DROP, dropping physical storage area /SPHINX_DEFAULT_2005-08-25:00:00:00:1/
successfully completed
DQL-I-DELNAME, removing /SPHINX_DEFAULT_2005-08-25:08:00:00:1/ from DQL name
cache on node VMSTM1
DQL-I-DELNAME, removing /SPHINX_DEFAULT_2005-08-25:08:00:00:1/ from DQL name
cache on node VMSTM4

DROP ALIAS

DO-DPDDQL-01A - 78 – Version 4.8

DQL-I-DROP, dropping physical storage area /SPHINX_DEFAULT_2005-08-25:08:00:00:1/
successfully completed
11-SEP-2006 14:33:30: DQL-I-REBUILD, rebuild database information from BCSXTC
11-SEP-2006 14:33:30: DQL-I-REBUILD, rebuild database information from VMSTM1
11-SEP-2006 14:33:30: DQL-I-REBUILD, rebuild database information from VMSTM4
DQL-I-REMDB, physical storage area /SPHINX_DEFAULT_2005-08-25:00:00:00:1/ removed
from database view
DQL-I-REMDB, physical storage area /SPHINX_DEFAULT_2005-08-25:08:00:00:1/ removed
from database view

Since the specified logical storage area (= all physical storage area create on 25-
AUG-2005) consists of two physical storage areas both physical storage areas
are deleted.

DROP METRIX

DO-DPDDQL-01A - 79 – Version 4.8

DROP METRIX

Drops (deletes) the metric (table) defined by the metric_name parameter from
all attached physical storage areas that metric exist.

Format

DROP METRIX metric_name;

Description

Drops (deletes) the metric (table) defined with the metric_name parameter
from all attached physical storage areas that metric exist.

Note

Before you apply the DROP METRIX command, make sure that you are
attached to these physical storage areas only you actually want to drop
(delete) the metric. Use the SHOW PHYSICAL STORAGE AREA command to
view which physical storage areas are attached (opened) by the actual DQL$
session.

Example

This example shows how to drop the metric SPHINX from a logical storage area.
The logical storage area consists of a single physical storage area (see also
CREATE METRIX command example). Attach the logical storage area:

DQL> ATTACH ALIAS SPHINX_DEFAULT DATE 25-AUG-2005;

Show available metrics:

DQL> SHOW METRIX;

METRIX DEFINITION of storage area SPHINX_DEFAULT_2005-08-25:00:00:00:1

 Metrics enabled Element Count
--
 SPHINX 1

Drop metric SPHINX:

DQL> DROP METRIX SPHINX;
DQL-I-DROP, metrix /SPHINX/ of physical storage area

/SPHINX_DEFAULT_2005-08-25:00:00:00:1/ successfully dropped
DQL-I-DROP, dropping metrix /SPHINX/ successfully completed

DROP PHYSICAL STORAGE AREA

DO-DPDDQL-01A - 80 – Version 4.8

DROP PHYSICAL STORAGE AREA

Drops (deletes) the physical storage area defined by the filename_alias
parameter.

Format

DROP PHYSICAL STORAGE AREA filename_alias;

Description

Drops (deletes) the physical storage area defined by the filename_alias
parameter. The filename alias is not the file name of the physical storage area
but an alias DQL$ defines when it starts up. These filename aliases are displayed
when you issue the SHOW PHYSICAL STORAGE AREA command. The filename
alias includes information about the database and logical storage area that
physical storage area belongs to.

This command can be applied to physical storage areas only that are not
attached by any DQL$ or PDBC$SRV session. If any DQL$ or PDBC$SRV session is
attached to the physical storage area the command fails.

Example

This example shows how to drop (delete) a physical storage area. The collection
database SPHINX_DEFAULT contains the physical storage area
SPHINX_DEFAULT_2005-08-25:00:00:00:1 (see CREATE STORAGE AREA
command example).

DQL> DROP PHYSICAL STORAGE AREA SPHINX_DEFAULT_2005-08-25:00:00:00:1;
DQL-I-DELNAME, removing /SPHINX_DEFAULT_2005-08-25:00:00:00:1/ from DQL name
cache on node VMSTM1
DQL-I-DELNAME, removing /SPHINX_DEFAULT_2005-08-25:00:00:00:1/ from DQL name
cache on node VMSTM4
DQL-I-DROP, dropping physical storage area /SPHINX_DEFAULT_2005-08-25:00:00:00:1/
successfully completed
11-SEP-2005 14:33:30: DQL-I-REBUILD, rebuild database information from VMSTM1
11-SEP-2005 14:33:30: DQL-I-REBUILD, rebuild database information from VMSTM4
DQL-I-REMDB, physical storage area /SPHINX_DEFAULT_2005-08-25:00:00:00:1/ removed
from database view

EXIT

DO-DPDDQL-01A - 81 – Version 4.8

EXIT

This command terminates the DQL$ session.

Format

EXIT

Description

This command disconnects from any collection database actually attached and
terminates the DQL$ session.

EXPORT

DO-DPDDQL-01A - 82 – Version 4.8

EXPORT

The EXPORT command is used to select data from PERFDAT collection databases
and/or logical storage areas and to store these data in a CSV file timely ordered.

Format

EXPORT [STACKED] statistics_itemlist
FROM metrix_name

ALIAS alias_namelist [DATE] date_list
[ELEMENT] element_list
[WHERE] filter_list
[LIMIT] number
[INTO] file_name
[FORMAT] {SINGLE_LINE | MULTI_LINE | T4};

Description

The EXPORT command is used to select data from PERFDAT collection databases
and/or logical storage areas and to store these data in a CSV file timely ordered.

Depending if the STACKED argument is applied or not the EXPORT query is
stacked or un-stacked.

The stacked form of the EXPORT query stacks the element data of each statistics
fetched from the source collection databases before inserting to the output CSV
file. Using the un-stacked form the data are not pre-processed.

As said before the stacked form of the EXPORT statement stacks the element
data of each statistics selected. Thus, the stacked form of the query can be
used:

 If you are interested in the stacked values of a group of elements stored
in a single collection database (e.g. overall CPU load caused by a group
of processes on a single node)

 If you are interested in the stacked values of a particular element stored
in collection databases that refer different nodes (e.g. total I/O requests
from all cluster members on a cluster wide mounted disk)

 If you are interested in the stacked values of a group of elements stored
in collection databases that refer different nodes (e.g. overall I/O
requests from all cluster members on all cluster wide mounted disks,
cluster wide CPU load caused by a number of processes).

If the clauses of the EXPORT statement are defined in a way that only one
element of the metric specified is selected and the data source is a single
collection database (data collected for one node) the stacked and the un-
stacked form of the query returns the same result.

EXPORT

DO-DPDDQL-01A - 83 – Version 4.8

Prerequisite:
The data files of the collection database / logical storage areas defined by the
ALIAS and DATE clause have to be attached in advance using the ATTACH
command.

DQL$ evaluates the clauses of the EXPORT statement in the following order:

1. FROM
2. ALIAS
3. DATE
4. ELEMENT
5. WHERE
6. LIMIT
7. INTO
8. FORMAT

There exist two modes to address the data fields (statistics) to export:

 Base address mode
In this case the statistics to fetch from the source database and the
metric the selected statistics are member of are defined separately. The
statistics_itemlist specifies the names of the statistics (field names) to
fetch from the metric defined by the FROM clause. Enter the statistics
as a comma separated list. In this case the FROM clause is mandatory.
E.g. using the base address mode to export the system wide CPU load
(field name: iCpuLoad) and kernel mode (field name: iKernel) from
metric SYSTEM of an OpenVMS collection database the EXPORT
statement has the form:

DQL$> EXPORT iCpuLoad, iKernel FROM SYSTEM ALIAS…;

 Direct address mode
In this case the statistics to fetch from the source database are entered
using the full data field address. Enter the full data field addresses of all
statistics to fetch (statistics_itemlist parameter) as a comma separated
list. The full data field address of a statistics consists of the metric the
statistics belongs to and its name (field name). The format is:

MetricName.StatisticsName

Since the metric the statistics belongs to is part of the full data field
address the FROM clause must not be defined. If you enter the FROM
clause the EXPORT statement fails. Using the direct address mode to
export the same data from a source database to a CSV file as shown in
the example above the EXPORT statement has the form:

DQL$> EXPORT SYSTEM.iCpuLoad, SYSTEM.iKernel ALIAS…;

Note

EXPORT

DO-DPDDQL-01A - 84 – Version 4.8

In contrast to the SELECT statement you can enter statistics within
the statistics item list that belong to different metrics of the source
database in case the export format is SINGLE or T4 (see FORMAT
clause description). If the export format is MULTI_LINE the statistics
defined within the statistics item list have to be member of the same
metric. Otherwise the command fails.

For both address modes it is a prerequisite that:

 All statistics specified must exist within the metric(s) defined
 The metric(s) (table(s)) defined must exist in at least in one collection

databases / logical storage areas defined by the ALIAS and DATE clause
but not in all.

Using the stacked form of the EXPORT statement a column per metric addressed
by the EXPORT query (column header: …iElementCnt) that contains the number
of elements that match the filter criteria applied (see description of the
ELEMENT and WHERE clause) and that are used to calculate the stacked value(s)
of the selected statistics is automatically appended to the output CSV file.

For detailed information about the clauses:

 ALIAS
 DATE
 WHERE
 LIMIT

please refer to the SELECT command description.

As with the SELECT statement the optional ELEMENT clause can be used to filter
the elements the EXPORT query applies to. Enter the element filter as a comma
(,), or OR sign (|) separated list. Elements that should be excluded from the
EXPORT query have to be preceded with the ‘!=’ or ‘<>’ tag in the comma
separated list of the ELEMENT clause. VSI PERFDAT V3.0and higher versions
provide full wildcard support. Asterisk (*) and percent sign (%) wildcard
characters can be placed anywhere within each string of the comma separated
element list.If you enter quotation marks at the beginning and the end of an
element string the string is taken literally (no wildcard operation performed on
that string even if it contains wildcard characters). If you omit the ELEMENT
clause all element data of the statistics selected stored in the collection
database / logical storage areas defined by the ALIAS and DATE clause are read.

Note

If you export statistics to a CSV file that belong to different metrics using
the direct address mode make sure that that the element filter includes
filter criteria for all metrics addressed. E.g. you want to export the system
wide CPU load and the CPU consumption of all PERFDAT processes from an
OpenVMS collection database. Since the system wide CPU load is member
of the metric SYSTEM and the metric of the CPU consumption of all

EXPORT

DO-DPDDQL-01A - 85 – Version 4.8

PERFDAT processes is PROCESS you have to apply the element filter for the
SYSTEM and the PROCESS filter within the ELEMENT clause. There exists
only one element in the metric SYSTEM called OpenVMS. To filter for the
PERFDAT processes you can apply the wildcard filter PERFDAT*. Thus, the
resulting element filter string is:

DQL>… ELEMENT OpenVMS | PERFDAT* …;
or

DQL>… ELEMENT OpenVMS , PERFDAT* …;
If you omit one of the filter strings either the data selected from the
SYSTEM or those selected from the PROCESS metric are not exported.

The file name of the CSV export file can be defined by the optional INTO clause.
If you omit the clause the default file name

SYS$LOGIN:EXPORT.CSV
is used.

The optional FORMAT clause defines the layout of CSV file to create. You can
specify:

 SINGLE_LINE
In this case one data record per timestamp is inserted to the CSV file.
The first column of the CSV file contains the timestamp. All other
columns contain the data of a dedicated statistics and element. If no
values are available for a dedicated statistics, element and timestamp
the data field is left blank. The header of each column but the
timestamp column has the format:

[MetricName]ElementName.StatisticsName

The maximum record length of a CSV created by the EXPORT statement
using the SINGLE layout option is 16000 characters. Thus, before you
apply the EXPORT statement make sure that the resulting header string
does not exceed this limit. Otherwise the command fails.

 MULTI_LINE
In this case each data record contains all data of a single element. Thus,
several records with the same timestamp will be inserted into the
resulting CSV files if the filter criteria applied addresses more than one
element and the metric defined contains more than one element.
The layout format MULTI_LINE can only be applied if you select statistics
that are member of the same metric of a single collection database (the
ALIAS clause contains only one collection database alias).
The first record of the output CSV file contains (header line) user
comments. The user comment can be defined by the DEFINE HEADER
command in advance of the EXPORT statement. If the header line has
not been user-defined either the content of the ALIAS clause in case of
the un-stacked form of the statement or the keyword STACKED in case
of the stacked form of the EXPORT command is stored. The second row
contains the column header. It consists of the names of the statistics
requested. All other rows are data rows containing data for the statistics
listed in the header record of a particular element.

EXPORT

DO-DPDDQL-01A - 86 – Version 4.8

 T4
A T4 compatible CSV file will be created that can be directly visualised
with T4Viz.

If you omit the FORMAT clause the CSV file layout will be SINGLE_LINE.

To make sure that the output CSV file is formatted (numbers, date, time, list
separator) as expected by the target system to transfer the CSV file apply the
DEFINE REGION and SET REGION command in advance. For more information
about regional settings please refer to the DEFINE REGION and SET REGION
command description.

Examples

Example 1

This examples demonstrates the use of the un-stacked from of the EXPORT query
using base address mode. In this example the CPU load (iCpuLoad) and kernel
mode load (iKernel) caused by the process PERFDAT on node VMSTM2 between
30-DEC-2005 02:00 and 30-DEC-2005 02:30 including the timestamps (‘Time’
statistics) are selected. Process data are stored in metric PROCESS. The user-
defined output CSV file is SYS$LOGIN:PERFDAT_30122005.CSV. Since the FORMAT
clause is omitted the CSV layout in use is SINGLE_LINE.

DQL> EXPORTTime, iCpuLoad, iKernel FROM PROCESS
cont> ALIAS VMSTM2_DEFAULT DATE 30-DEC-2005
cont> ELEMENT PERFDAT
cont> WHERE TIME >= 30-DEC-2005 02:00, TIME <= 30-DEC-2005 02:30
cont> INTO SYS$LOGIN:PERFDAT_30122005.CSV;
DQL-EXPORT, start export data to /SYS$LOGIN:PERFDAT_30122005.CSV/

Content of output file SYS$LOGIN:PERFDAT_30122005.CSV

Time, VMSTM2::[PROCESS]PERFDAT.iCpuLoad, VMSTM2::[PROCESS]SYSTEM.iCpuLoad
30-DEC-2005 02:00:00, 0.033, 0.000
30-DEC-2005 02:02:00, 0.317, 0.000
30-DEC-2005 02:04:00, 0.175, 0.000
30-DEC-2005 02:06:00, 0.142, 0.000
30-DEC-2005 02:08:00, 0.083, 0.000
30-DEC-2005 02:10:00, 0.150, 0.000
30-DEC-2005 02:12:00, 0.108, 0.000
30-DEC-2005 02:14:00, 0.217, 0.000
30-DEC-2005 02:16:00, 0.317, 0.000
30-DEC-2005 02:18:00, 0.250, 0.000
30-DEC-2005 02:20:00, 0.258, 0.000
30-DEC-2005 02:22:00, 0.250, 0.000
30-DEC-2005 02:24:00, 0.275, 0.000
30-DEC-2005 02:26:00, 0.033, 0.000
30-DEC-2005 02:28:00, 0.033, 0.000

The ELEMENT clause is applied to filter for process PERFDAT and the WHERE
clause to filter for data of the time period 30-AUG-200502:00 to 30-AUG-
200502:30. In this case the query accesses the logical storage area of 30-AUG-

EXPORT

DO-DPDDQL-01A - 87 – Version 4.8

2005 of the collection database VMSTM2_DEFAULT. Since no header line has
been user-defined (DEFINE HEADER) in advance of the EXPORT statement the
default un-stacked header – ALIAS clause content VMSTM2_DEFAULT - is
inserted.

Example 2

This example demonstrates the difference in the CSV layout if MULTI_LINE CSV
format is defined (FORMAT clause). Except the FORMAT clause the EXPORT
statement is identical to example 1.

DQL> EXPORTTime, iCpuLoad, iKernel FROM PROCESS
cont> ALIAS VMSTM2_DEFAULT DATE 30-DEC-2005
cont> ELEMENT PERFDAT
cont> WHERE TIME >= 30-DEC-2005 02:00, TIME <= 30-DEC-2005 02:30
cont> INTO SYS$LOGIN:PERFDAT_30122005.CSV FORMAT MULTI_LINE;
DQL-EXPORT, start export data to /SYS$LOGIN:PERFDAT_30122005.CSV/

Content of output file SYS$LOGIN:PERFDAT_30122005.CSV

VMSTM2_DEFAULT
Time, iCpuLoad
30-DEC-2005 02:00:00, 0.033
30-DEC-2005 02:00:00, 0.000
30-DEC-2005 02:02:00, 0.317
30-DEC-2005 02:02:00, 0.000
.
.
30-DEC-2005 02:24:00, 0.275
30-DEC-2005 02:24:00, 0.000
30-DEC-2005 02:26:00, 0.033
30-DEC-2005 02:26:00, 0.000
30-DEC-2005 02:28:00, 0.033
30-DEC-2005 02:28:00, 0.000

As you can see there exist pairs of records containing the same timestamp. The
reason is that in multi-line mode a data record consists of all data of a single
element. Since two elements were defined by the ELEMENT clause two records
per timestamp are inserted - the first one refers to process PERFDAT the second
to process SYSTEM.

Example 3

This example demonstrates the use of the un-stacked form of the EXPORT query
using the direct address mode. The source collection database and the time
range selected to export data are the same as in example 1. In this example the
system wide CPU load (member of metric SYSTEM) and the CPU consumption of
process PERFDAT (member of metric PROCESS) are exported to the CSV file
SYS$LOGIN:EXPORT.CSV since the INTO clause is missing. The output CSV layout
is SINGLE_LINE since the FORMAT clause is omitted. Since the name of element
of the SYSTEM metric is OpenVMS, and the process element to filter is PERFDAT
the element filter has to contain both element names – OpenVMS | PERFDAT.

EXPORT

DO-DPDDQL-01A - 88 – Version 4.8

DQL> EXPORTSYSTEM.iCpuLoad, PROCESS.iCpuLoad
cont> ALIAS VMSTM2_DEFAULT DATE 30-DEC-2005
cont> ELEMENT OpenVMS | PERFDAT
cont> WHERE TIME >= 30-DEC-2005 02:00, TIME <= 30-DEC-2005 02:30;
DQL-EXPORT, start export data to /SYS$LOGIN:EXPORT.CSV/

Content of output file SYS$LOGIN:EXPORT.CSV

Time, VMSTM2::[SYSTEM]OPENVMS.iCpuLoad, VMSTM2::[PROCESS]PERFDAT.iCpuLoad
30-DEC-2005 02:00:00, 0.068, 0.033
30-DEC-2005 02:02:00, 26.590, 0.317
30-DEC-2005 02:04:00, 13.657, 0.175
30-DEC-2005 02:06:00, 14.945, 0.142
30-DEC-2005 02:08:00, 13.325, 0.083
30-DEC-2005 02:10:00, 11.344, 0.150
30-DEC-2005 02:12:00, 19.197, 0.108
,30-DEC-2005 02:14:00, 20.418, 0.217
30-DEC-2005 02:16:00, 23.851, 0.317
30-DEC-2005 02:18:00, 19.404, 0.250
30-DEC-2005 02:20:00, 23.197, 0.258
30-DEC-2005 02:22:00, 23.432, 0.250
30-DEC-2005 02:24:00, 47.851, 0.275
30-DEC-2005 02:26:00, 3.167, 0.033
30-DEC-2005 02:28:00, 0.099, 0.033

Example 4

This example demonstrates the use of the un-stacked form of the EXPORT query
using the direct address mode to select data from different sources (collection
databases / logical storage areas defined by the ALIAS and DATE clause) and the
selected statistics and metrics do not exist in all collection data files.

We want to export the I/O rate of all FC-adapters of the system VMSTM1 and
the throughput of the FC-switches these adapters are connected into the CSV
file SYS$LOGIN:IOPATH.CSV. VMSTM1 has two FC- adapters FGA and FGB. FGA is
connected to Port_1

DQL> ATTACH ALIAS VMSTM1_DEFAULT DATE 26-NOV-2007;
DQL> ATTACH ALIAS FC-SWITCH1_DEFAULT DATE 26-NOV-2007;
DQL> ATTACH ALIAS FC-SWITCH2_DEFAULT DATE 26-NOV-2007;

DQL> EXPORT IOPATHES.iOpCnt, PORT.TotWordsALIAS
cont> VMSTM1_DEFAULT, FC-SWITCH1_DEFAULT, FC-SWITCH2_DEFAULT
cont> DATE 26-NOV-2007 ELEMENT FG* | PORT_0
cont> INTO SYS$LOGIN:IOPATH.CSV;

Example 5

This example demonstrates the use of the stacked form of the EXPORT query
using the direct address mode. The source collection database is a cluster view.
This view consists of the node VMSTM1 and VMSTM2. The time range selected
is 15-JAN-200602:00 to 16-JAN-200602:00. In this example the stacked CPU load

EXPORT

DO-DPDDQL-01A - 89 – Version 4.8

(iCpuLoad) and kernel mode load (iKernel) caused by all PERFDAT and DQL
processes active on the members of the cluster view are displayed (cluster wide
stacked values).

DQL> SHOW VIEW;

View referenced Aliases
--

VMSALL VMSTM2_DEFAULT
VMSTM1_DEFAULT

DQL> EXPORTSTACKED PROCESS.iCpuLoad, PROCESS.iKernel
cont> ALIAS VMSALL_VIEW DATE 15-JAN-2006, 16-JAN-2006
cont> ELEMENT PERFDAT*, DQL*
cont> WHERE TIME >=15-JAN-200602:00, TIME <= 16-JAN-200602:00
cont> INTO SYS$LOGIN:PROCESS_CLUSTER.CSV;
DQL-EXPORT, start export data to /SYS$LOGIN:PROCESS_CLUSTER.CSV/

Content of output file SYS$LOGIN:PROCESS_CLUSTER.CSV

Time, [PROCESS]PERFDAT*, DQL*.iCpuLoad, [PROCESS]PERFDAT*, DQL*.iKernel,

[PROCESS]PERFDAT*, DQL*.iElementCnt
15-JAN-2006 02:00:00, 26.583, 6.775, 12.000
15-JAN-2006 02:02:00, 123.317, 33.875, 15.000
15-JAN-2006 02:04:00, 34.450, 8.642, 12.000
15-JAN-2006 02:06:00, 25.817, 6.492, 10.000
15-JAN-2006 02:08:00, 36.758, 8.817, 10.000
15-JAN-2006 02:10:00, 0.508, 0.083, 8.000
15-JAN-2006 02:12:00, 0.583, 0.092, 8.000
15-JAN-2006 02:14:00, 0.508, 0.133, 8.000.
.
.
16-JAN-2006 01:44:00, 0.558, 0.083, 0.000
16-JAN-2006 01:46:00, 0.642, 0.108, 0.000
16-JAN-2006 01:48:00, 0.625, 0.092, 0.000
16-JAN-2006 01:50:00, 0.558, 0.083, 0.000
16-JAN-2006 01:52:00, 0.500, 0.067, 0.000
16-JAN-2006 01:54:00, 0.675, 0.108, 0.000
16-JAN-2006 01:56:00, 0.567, 0.058, 0.000
16-JAN-2006 01:58:00, 1.225, 0.292, 0.000

Although not defined the CSV output file contains a data column named
[PROCESS]PERFDAT*, DQL*.iElemenCnt since the stacked form of the EXPORT
statement is used. This statistics displays the number of elements that match
the filter criteria of the EXPORT (ELEMENT and WHERE clause) statement and
that are used to calculate the stacked values.

Since the FORMAT clause is missing the CSV output layout is SINGLE_LINE. Since
no additional header line is inserted when using the single line output format
the DEFINE HEADER command in advance has no effect on the CSV output.

If you apply the same export CSV query defining multi line CSV layout the first
record of the CSV file contains the string defined by the DEFINE HEADER
command.

EXPORT

DO-DPDDQL-01A - 90 – Version 4.8

DQL> DEFINE HEDAER “Cluster wide CPU Load / Kernel mode of PERFDAT*, DQL*”

DQL> EXPORTSTACKED PROCESS.iCpuLoad, PROCESS.iKernel
cont> ALIAS VMSALL_VIEW DATE 15-JAN-2006, 16-JAN-2006
cont> ELEMENT PERFDAT*, DQL*
cont> WHERE TIME >=15-JAN-200602:00, TIME <= 16-JAN-200602:00
cont> INTO SYS$LOGIN:PROCESS_CLUSTER.CSV FORMAT MULTI_LINE;
DQL-EXPORT, start export data to /SYS$LOGIN:PROCESS_CLUSTER.CSV/

Content of output file SYS$LOGIN:PROCESS_CLUSTER.CSV

Cluster wide CPU Load / Kernel mode of PERFDAT*, DQL*
Time, iCpuLoad, iKernel, iElementCnt
15-JAN-2006 02:00:00, 26.583, 6.775, 12.000
15-JAN-2006 02:02:00, 123.317, 33.875, 15.000
15-JAN-2006 02:04:00, 34.450, 8.642, 12.000
15-JAN-2006 02:06:00, 25.817, 6.492, 10.000
15-JAN-2006 02:08:00, 36.758, 8.817, 10.000
15-JAN-2006 02:10:00, 0.508, 0.083, 8.000
15-JAN-2006 02:12:00, 0.583, 0.092, 8.000
15-JAN-2006 02:14:00, 0.508, 0.133, 8.000.
.
.
16-JAN-2006 01:44:00, 0.558, 0.083, 8.000
16-JAN-2006 01:46:00, 0.642, 0.108, 8.000
16-JAN-2006 01:48:00, 0.625, 0.092, 8.000
16-JAN-2006 01:50:00, 0.558, 0.083, 8.000
16-JAN-2006 01:52:00, 0.500, 0.067, 8.000
16-JAN-2006 01:54:00, 0.675, 0.108, 8.000
16-JAN-2006 01:56:00, 0.567, 0.058, 8.000
16-JAN-2006 01:58:00, 1.225, 0.292, 8.000

Example 6

The EXPORT query is the same as in example 4 but the regional settings are
changed in advance using the DEFINE REGION and SET REGION command to
demonstrate the effect of regional settings on the CSV output format.

DQL>DEFINE REGION FRANCE;

 Name: FRANCE
 Enter Decimal Symbol [.]:,
 Enter List Seperator [,]:;

 Enter the day format:
 d defines the day format (minimum number of day digits)
 m defines the month format. If you assign mmm the month is
 displayed textual (JAN, FEB, MAR ...). Otherwise the month
 is displayed numerical (e.q. m -> 1, 9, 10; mm -> 01, 09, 10)
 y defines the year format (number of year digits)

 Enter Date Format [dd-mmm-yyyy]: dd/mm/yyyy
 Enter month desriptors as a comma seperated list [e.g. JAN, FEB, ...]
 Enter List: [JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC]:

EXPORT

DO-DPDDQL-01A - 91 – Version 4.8

DQL-I-CFGSUCCESS, successfully defined region setting /FRANCE/
 To use it as default for the session use the SET REGION command.

DQL> SET REGION FRANCE;
DQL-I-CFGSUCCESS, default region setting changed to /FRANCE/

DQL> EXPORTSTACKED PROCESS.iCpuLoad, PROCESS.iKernel
cont> ALIAS VMSALL_VIEW DATE 15-JAN-2006, 16-JAN-2006
cont> ELEMENT PERFDAT*, DQL*
cont> WHERE TIME >=15-JAN-200602:00, TIME <= 16-JAN-200602:00
cont> INTO SYS$LOGIN:PROCESS_CLUSTER.CSV;
DQL-EXPORT, start export data to /SYS$LOGIN:PROCESS_CLUSTER.CSV/

Content of output file SYS$LOGIN:PROCESS_CLUSTER.CSV

Time; [PROCESS]PERFDAT*, DQL*.iCpuLoad; [PROCESS]PERFDAT*, DQL*.iKernel;

[PROCESS]PERFDAT*, DQL*.iElementCnt
15/01/2006 02:00:00; 26,583; 6,775; 12,000
15/01/2006 02:02:00; 123,317; 33,875; 15,000
15/01/2006 02:04:00; 34,450; 8,642; 12,000
15/01/2006 02:06:00; 25,817; 6,492; 10,000
15/01/2006 02:08:00; 36,758; 8,817; 10,000
15/01/2006 02:10:00; 0,508; 0,083; 8,000
15/01/2006 02:12:00; 0,583; 0,092; 8,000
15/01/2006 02:14:00; 0,508; 0,133; 8,000.
.
.
16/01/2006 01:44:00, 0.558, 0.083, 8.000
16/01/2006 01:46:00, 0.642, 0.108, 8.000
16/01/2006 01:48:00, 0.625, 0.092, 8.000
16/01/2006 01:50:00, 0.558, 0.083, 8.000
16/01/2006 01:52:00, 0.500, 0.067, 8.000
16/01/2006 01:54:00, 0.675, 0.108, 8.000
16/01/2006 01:56:00, 0.567, 0.058, 8.000
16/01/2006 01:58:00, 1.225, 0.292, 8.000

EXTRACT REPORT

DO-DPDDQL-01A - 92 – Version 4.8

EXTRACT REPORT

The EXTRACT REPORT command extracts trend and capacity reports according
to a report profile.

Format

EXTRACT REPORT report_profile
[ALIAS] alias_name

[FROM start_time TO stop_time];

Description

The EXTRACT REPORT command extracts trend and capacity reports according
to a report profile. The report profile to use is defined by the report_profile
parameter. Report profiles are created using the PERFDAT_MGR utility.

For more information about defining trend and capacity reports please see the
manual VSI PERFDAT - PERFDAT_MGR Reference Manual.

The ALIAS clause is optional. It is used to extract a trend report with the same
settings but accessing a different data source as defined in the report profile (=
report_profile parameter). The ALIAS clause specifies the alias of the source
collection database. That database alias can’t be user-defined. DQL$ assigns
these aliases when it starts up automatically. The collection database aliases
available are displayed when you apply the SHOW DATABASE command. The
aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If you omit the ALIAS clause the target trend database to insert the
trend/capacity report defined by the report_profile parameter is addressed by
the alias

LocalNode_report_profile

E.g. you execute the EXTRACT REPORT command on node VMSTM1 using the
report profile WEEK the target database alias will be VMSTM1_WEEK.

In case the ALIAS clause defining the source database is present the target
database alias is

NodeName_report_profile

EXTRACT REPORT

DO-DPDDQL-01A - 93 – Version 4.8

E.g. the source database is BCSXTC_2MIN and you execute the EXTRACT REPORT
command on node VMSTM1 using the report profile WEEK the target database
alias will be BCSXTC_WEEK.

The physical storage areas of the target database are automatically created if
the report time range for trend and capacity report processing is not covered by
the existing physical storage areas of the target collection database.

The FROM and TO clause are optional. These keywords define the time range
for trend and capacity report processing. The date/time format is dd-mmm-yyyy
hh:mm:ss.mm.If one keyword is used the other is mandatory.

If you omit both – the FROM and TO – clause the time range covered by the
whole collection database is used for trend and capacity report processing is

Example

DQL> EXTRACT WEEK ALIAS VMSTM1_DEFAULT
cont>FROM 1-AUG-2005 TO 2-AUG-2005;

 Creating Trend Report: WEEK for Node: VMSTM1

DQL-I-CREATEAREA, storage area not created
DQL-I-CREATEAREA, specified time range totally or partly captured by other storage area
(Version: 1)
DQL-I-CREATEMETRIX, metrix already exists
DQL-I-CREATEMETRIX, metrix already exists
DQL-I-CREATEMETRIX, metrix already exists
DQL-I-CREATEMETRIX, metrix already exists
DQL-I-CREATEMETRIX, metrix already exists
DQL-I-CREATEMETRIX, metrix already exists
DQL-I-CREATEMETRIX, metrix already exists
DQL-I-CREATEMETRIX, metrix already exists

Processing trend report - TimeRange: 1-AUG-200500:00:00 – 2-AUG-200500:00:00

 Processing date: 1-SEP-2005
..
Memory Allocation statistics ...
15-SEP-2005 02:17:35: PERFDAT-I-VMSTAT, VM allocated: 10042,

VM allocation size: 273.147 MB
15-SEP-2005 02:17:35: PERFDAT-I-VMSTAT, VM deallocated: 10042,

VM deallocation size: 273.147 MB

This example extracts the trend report by the report profile WEEK. The
source collection database is VMSTM1_DEFAULT. The time range for
report processing is 1-AUG-2005 to 2-AUG-2005.

HELP

DO-DPDDQL-01A - 94 – Version 4.8

HELP

This command invokes the online help.

Format

HELP

Description

This command invokes the online help.

IMPORT

DO-DPDDQL-01A - 95 – Version 4.8

IMPORT

This command imports valid CSV files into an existing collection database.

Format

IMPORT file_name AS metric
[DESCRIBED BY descriptor_filename]

TARGET DATABASE alias_name;
[FORMAT] { SINGLE_LINE | MULTI_LINE };

Description

This command imports valid CSV files into an existing collection database.

The content of CSV files with two different layouts can be imported (see also the
EXPORT command description). The optional FORMAT clause defines the layout
of the input CSV files addressed by the MAP command. Valid keywords are
SINGLE_LINE and MULTI_LINE. If the FORMAT clause is omitted the default
layout format is SINGLE_LINE:

 SINGLE_LINE
The layout of the CSV file has to fulfill the following criteria:

1. The first line lists all nodes the content of CSV file belongs to.
2. The second line contains the column headers. Each column

contains the data of a dedicated statistics and element. Thus,
the element name and the statistics name have to be encoded
in the header of the each column. The supported header
formats are:

ElementName.StatisticsName
ElementName.StatisticsName
StatisticsName.ElementName
StatisticsName.ElementName

As you can see the statistics name can be placed in front or
after the element name string separated by a dot (.) or not. The
only exception of the rule is the column that contains the
timestamp (see below).

3. Each data row has to contain as many data values as columns
defined by the column header.

4. At least one column must contain timestamps and the column
header has to match the wildcard string *Time or Time*.

5. The max. length of a record in the CSV file may not exceed
32767 bytes.

6. The rows of the CSV file have to be sorted ascending by the
column that contains the timestamps.

IMPORT

DO-DPDDQL-01A - 96 – Version 4.8

7. A record descriptor must exist that describes the CSV file
records –either in a descriptor file or in the CSV mapping
database.

8. The time field of each record has to be unique throughout the
whole CSV file.

 MULTI_LINE

The layout of the CSV file has to fulfill the following criteria:
1. The first line lists all nodes the content of CSV file belongs to.
2. The second line contains the column headers - one header item

per column. The maximum length of a header item is limited to
64 characters.

3. One column header field has to be named TIME. This column
contains the timestamps of the data records in OpenVMS
date/time format.

4. The maximum number of columns is limited to 200.
5. The max. length of a record in the CSV file may not exceed

32767 bytes.
6. The rows of the CSV file have to be sorted ascending by the

TIME column.
7. A record descriptor must exist that describes the CSV file

records –either in a descriptor file or in the CSV mapping
database.

8. Several rows can co-exist with the same timestamp as long as
the rows refer different elements. In that case 1 to max 3
columns must exist that defines the element key.Which
columns are parts of the element key is defined in the mapping
descriptor file (see the section Descriptor file of the MAP
command description). With other words each data record has
to be unique with respect to the element key or the timestamp.

 T4

The CSV files were created by the T4 utility. The T4 format is similar to
the SINGLE_LINE format. The only difference is that two extra header
lines exist. Thus, a T4 formatted CSV file has to fulfil the criteria:

1. The first line lists all nodes the content of CSV file belongs to.
2. The fourth line contains the column headers. Each column

contains the data of a dedicated statistics and element. Thus,
the element name and the statistics name have to be encoded
in the header of each column. The supported header formats
are:

ElementName.StatisticsName
ElementName.StatisticsName
StatisticsName.ElementName
StatisticsName.ElementName

As you can see the statistics name can be placed in front or
after the element name string separated by a dot (.) or not. The

IMPORT

DO-DPDDQL-01A - 97 – Version 4.8

only exception of the rule is the column that contains the
timestamp (see below).

3. Each data row has to contain as many data values as columns
defined by the column header.

4. At least one column must contain timestamps and the column
header has to match the wildcard string *Time or Time*.

5. The max. length of a record in the CSV file may not exceed
32767 bytes.

6. The rows of the CSV file have to be sorted ascending by the
column that contains the timestamps.

7. A record descriptor must exist that describes the CSV file
records –either in a descriptor file or in the CSV mapping
database (see the Descriptor file section of the MAP command
description).

8. The time field of each record has to be unique throughout the
whole CSV file.

Any CSV file created by the T4 utility fulfils the criteria 1-6, 8. Thus,
in order to import T4 files you have to create appropriate descriptor
files. Such descriptor files will be provided by the next releases of
PERFDAT.

For more information about valid CSV files see the MAP command description.

The IMPORT command is similar to the LOAD command. The main difference
between the IMPORT and the LOAD command is that data imported by the
IMPORT command are pre-processed before they are inserted. The LOAD
command does not pre-process CSV data.

Using the IMPORT command CSV data are normalized before they are inserted
into a collection database. This is done to guarantee that all statistical methods
provided by the statistics package of the DQL interface can be applied to the
imported data too.

It is very likely that the timestamps in the time column of a CSV file do not
match the timestamps in the collection database. This is a prerequisite when
correlating data. Any correlation based on data that does not match in time
(timestamp of a sample, sample interval) will return wrong results. Normalizing
means that based on the CSV data expectancy values are calculated for the
timestamps of the collection database, and these expectancy values are
inserted into the collection database. An integral based algorithm is used to
normalize the data.

The file_name parameter specifies the full file name of the CSV files to be
inserted. Asterisk (*) and per cent sign (%) wildcard characters can be placed
anywhere within the file name string to import several CSV files at once.

IMPORT

DO-DPDDQL-01A - 98 – Version 4.8

The metric parameter of the AS clause specifies the name of the metric (table)
to be created in the physical storage areas of the existing collection database.
The CSV data will be stored within that metric (table).

The collection database to import the CSV data is specified by the TARGET
DATABASE clause. Enter the collection database alias of the target database.
That database alias can’t be user-defined. DQL$ assigns these aliases when it
starts up automatically. The collection database aliases available are displayed
when you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

The target collection database does not have to be attached before applying the
IMPORT command. The target collection database will be attached
automatically.

In order to import CSV file content a record descriptor is required that defines
the (field) layout of the CSV file(s).

The optional DESCRIBED BY clause specifies the CSV descriptor file containing
the record descriptor for the CSV files to insert. Depending if an entry with the
name specified by the AS clause already exists in the CSV mapping database
PERFDAT$CFG:CSV_PROFILES.CFG, this clause can be omitted or not. If you omit
this clause DQL$ searches for the entry defined by the AS clause in the CSV
mapping database and uses the record descriptor stored in that entry to insert
the CSV data. If no such entry exists the command fails.

For detailed information about record descriptors and descriptor files please see
the Descriptor file section of the MAP command description.

Before applying the IMPORT command verify that the default regional setting
(format of numbers, date, time and list separator) of the current DQL$ session
matches the CSV file format. If it does not use the DEFINE REGION and SET
REGION command to create a matching default regional setting. For more
information about regional settings please refer to the DEFINE REGION and SET
REGION command description.

Before DQL$ imports the data it performs some general checks:

 It checks if the target collection database exist. If it does not exist the
command fails.

 It checks if the target database contains data. If this is not the case the
command fails. Remember that the IMPORT command normalizes CSV
data by calculating expectancy values for the timestamps of the
collection database. Thus, if no timestamps exist in the target database

IMPORT

DO-DPDDQL-01A - 99 – Version 4.8

no data can be normalized. Consequently the IMPORT command fails if
you want to insert CSV data into an empty collection database manually
created by the CREATE command. In this case use the LOAD command
to insert the CSV data.

In addition the following checks are performed per CSV file to import:

 It checks if the records of the CSV file are sorted ascending by the TIME

column. If this not the case the data of the CSV file will not be imported.
 It checks if the target collection database specified by the TARGET

DATABASE clause refers a node that is listed in the first line of the CSV
file. If this not the case the CSV file is not valid for the node and the data
are not imported.

 It checks if the metric defined by the AS clause already exists in the
physical storage areas of the target collection database. If this is the
case and the record descriptor does not match the existing metric
definition the command fails.

 It checks if data exist in the target database for the time range defined
by the timestamps in the TIME column of the CSV file. If the CSV file
contains records with a timestamp that are outside the time range of
the data stored in the target collection database these records of the
CSV file are not imported. Remember that the IMPORT command
normalizes CSV data by calculating expectancy values for the
timestamps of the collection database. Thus, this can be done only if
corresponding timestamps exist in the target database.

 It checks if the shortest time interval defined by the timestamps in the
CSV file is within the trusted range. The trusted range is 3 times the
sample interval of the target database. If this is not the case no data will
be imported since it makes no sense to import CSV data into a collection
database with a sample interval that is much greater than the sample
interval of the collection that created the target collection database.

 If checks if the list separator of the default regional setting of the
current DQL$ session is found in the CSV file to load. If this is not the
case the default regional setting does not match the format of the CSV
file and the command fails.

Example

This example shows how to import existing CSV files into the existing collection
database BCSXTC_DEFAULT created by a collection started with the collection
profile DEFAULT on node BCSXTC. The layout of the input CSV files is
MULTI_LINE. Thus, the FORMAT clause is entered with the keyword
MULTI_LINE.

DQL>IMPORTPERFDAT$DB_ARCHIVE:*.CSV AS SPHINX
cont>DESCRIBED BY PERFDAT$DB_ARCHIVE:SPHINX_DSC.CFG
cont>TARGET DATABASE BCSXTC_DEFAULT;
cont> FORMAT MULTI_LINE;

IMPORT

DO-DPDDQL-01A - 100 – Version 4.8

DQL-I-IMPORT, importing data from file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_AUG_2000.CSV;2/
DQL-I-GETELEM, fetching elements from source file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_AUG_2000.CSV;2/
DQL-I-IMPORT, importing Metrix /SPHINX/ in storage area /BCSXTC_DEFAULT_2005-08-25:00:00:00:1/
DQL-I-STARTLOAD, start importing data -> element count: 1
DQL-I-IMPORT, file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_AUG_2000.CSV;2/successfully imported

DQL-I-IMPORT, importing data from file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_15_JUL_2000.CSV;6/
DQL-I-GETELEM, fetching elements from source file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_15_JUL_2000.CSV;6/
DQL-W-IMPORT, time range of the data stored CSV file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_15_JUL_2000.CSV;6/ not covered by target database
/BCSXTC_DEFAULT/
DQL-W-IMPORT, file /PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_15_JUL_2000.CSV;6/ not imported

DQL-I-IMPORT, importing data from file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_NOV_2003.CSV;13/
DQL-I-GETELEM, fetching elements from source file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_NOV_2003.CSV;13/
DQL-W-IMPORT, time range of the data stored CSV file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_NOV_2003.CSV;13/ not covered by target database
/BCSXTC_DEFAULT/
DQL-W-IMPORT, file /PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_NOV_2003.CSV;13/ not imported

Due to the statement applied all CSV files of the directory PERFDAT$DB_ARCHIVE
are selected to be imported into the collection database BCSTC_DEFAULT. Since
the only file that contains records with valid timestamps (within time range of the
target database) is PERFDAT$DB_ARCHIVE:SXWS_CL0_25_AUG_2005.CSV, this is
the only one that is actually imported. The file import of all other files is denied.

INSERT

DO-DPDDQL-01A - 101 – Version 4.8

INSERT

Insert data fields of a record or the whole record into an existing metric of a
physical storage area.

Format

INSERT INTO metric_name

ALIAS alias_name [DATE] date
(statistics_itemlist)

VALUE (value_list);

or

INSERT INTO metric_name

‘FILE filename_alias’
(statistics_itemlist)

VALUE (value_list);

Description

Insert data fields of a record or the whole record into an existing metric of a
physical storage area.

The INTO clause specifies the metric to insert the records. The metric must exist
in the physical storage areas defined by the ALIAS/DATE or FILE clause.

The target data file to insert the record can be addressed either by the
ALIAS/DATE clause or the FILE clause. The FILE and ALIAS/DATE clause are
mutual exclusive. If the FILE clause in used the INSERT command tries to insert
the record (or parts of it) into the physical storage area referenced by the
filename_alias. If the ALIAS/DATE clauses are used DQL$ searches the physical
storage area within the collection database/logical storage area addressed by
the ALIAS/DATE clauses to insert the record.

The ALIAS clause specifies the alias of the target collection database to insert
the record (or parts of it).That database alias can’t be user-defined. DQL$
assigns these aliases when it starts up automatically. The collection database
aliases available are displayed when you apply the SHOW DATABASE command.
These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

INSERT

DO-DPDDQL-01A - 102 – Version 4.8

If you apply the optional DATE clause the query addresses a single logical
storage area. Use OpenVMS date format to define the day of interest (a logical
storage area is the sum of all physical storage areas created on the same day). If
you omit the DATE clause all data files (physical storage areas) of the collection
database defined by the ALIAS clause are searched to insert the record.

The access mode to the physical storage area(s) defined by the ALIAS/DATE or
FILE clause has (have) to be READ WRITE. Use the SET TRANSACTION command
to grant READ WRITE access to the data file(s). Otherwise the INSERT command
fails.

The statistics_itemlist defines the statistics (data fields) of the record to insert.
Enter the statistics as a comma separated list. Each of the statistics listed have
to exist in the metric defined by the INTO clause. To display the statistics
available for a particular metric apply the SHOW STATISTICS command.

The VALUE clause contains the values of the statistics listed in the statistics item
list, as a comma separated list. The first item of the value list is assigned to the
first item of the statistics list. The second item of the value list is assigned to the
second item of the statistics list and so on. The value list has to contain as many
values as the statistics item list.

At minimum all data fields that are defined as part of the element key (apply the
SHOW STATISTICS command to see which data fields (statistics) are defined as
element key data fields) and the TIME statistics (date/time format is dd-mmm-
yyyy hh:mm:ss) have to be defined. The TIME statistics is part of any valid metric
stored in the data files of the distributed performance database (see the
CREATE METRIX command description). The value assigned to the TIME
statistics is used by the INSERT command to validate the physical storage are to
insert the record. Records can be inserted to a physical storage area if the
timestamp of the record (TIME data field) is covered by the time range the
physical storage area is valid for (see also the CREATE STORAGE AREA command
description).

No duplicate inserts are allowed for data files of the PERFDAT distributed
database. Thus, if you insert a record containing a timestamp and an element
key already stored in the target physical storage area the INSERT command fails
due to duplicates.

All statistics of the metric defined by the INTO clause not listed in the statistics
item list are automatically zeroed.

Example

This example shows how to insert a record into the metric SPHINX. This metric
exists (see CREATE METRIX command example) within the collection database
SPHINX_DEFAULT previously created (see CREATE STORAGE AREA command
example).

INSERT

DO-DPDDQL-01A - 103 – Version 4.8

Attach the target database:
DQL> ATTACH ALIAS SPHINX_DEFAULT;
DQL-I-ATTACH, successfully attached file
/SPHINX_DEFAULT_2005-08-25:00:00:00:1/

Set access mode:
DQL> SET TRANSACTION READ WRITE ON ALIAS SPHINX_DEFAULT;
DQL-I-SET, file /SPHINX_DEFAULT_2005-08-25:00:00:00:1/ will be READ WRITE
accessible

Insert record:
DQL> INSERT INTO SPHINX ALIAS SPHINX_DEFAULT
cont> (TIME, PART9 Ges, PART10 Ges, PART11 Ges, PART12 Ges, Request Ges)
cont> VALUE (25-AUG-200513:40, 1.2, 2.0, 3.1, 0.3, 6.5);
DQL-I-INSERT, successfully inserted record into Metrix /SPHINX/

The metric SPHINX consists of more statistics than applied by the INSERT
command.
DQL> SHOW STATISTICS FROM SPHINX ALIAS SPHINX_DEFAULT;

SPHINX METRIX DEFINITION of storage area SPHINX_DEFAULT_2005-08-25:00:00:00:1

 Field definitions of Metrix: SPHINX

FieldName Type Description
--------- ---- -----------

Time DATETIME(8) Time
PART9 Ges FLOAT(4) Partion 9 Gesamt TA
PART9 ACK FLOAT(4) Partion 9 Ack TA
PART9 NAK FLOAT(4) Partion 9 Nack TA
PART10 Ges FLOAT(4) Partion 10 Gesamt TA
PART10 ACK FLOAT(4) Partion 10 Ack TA
PART10 NAK FLOAT(4) Partion 10 Nack TA
PART11 Ges FLOAT(4) Partion 11 Gesamt TA
PART11 ACK FLOAT(4) Partion 11 Ack TA
PART11 NAK FLOAT(4) Partion 11 Nack TA
PART12 Ges FLOAT(4) Partion 12 Gesamt TA
PART12 ACK FLOAT(4) Partion 12 Ack TA
PART12 NAK FLOAT(4) Partion 12 Nack TA
Request Ges FLOAT(4) Gesamt TA
GES ACK FLOAT(4) Gesamt Ack TA
GES NAK FLOAT(4) Gesamt Nack TA

Element count 1

Thus the statistics:

 PART9 ACK
 PART9 NAN
 PART10 ACK
 PART10 NAK
 PART11 ACK
 PART11 NAK

INSERT

DO-DPDDQL-01A - 104 – Version 4.8

 PART12 ACK
 PART12 NAK
 Ges ACK
 Ges NAK

are all zeroed automatically.

LIST METRIX

DO-DPDDQL-01A - 105 – Version 4.8

LIST METRIX

This command displays all the performance metrics (tables) stored in the record
descriptor table of the PERFDAT configuration database.

Format

LIST METRIX metric_name [OSTYPE OS_name];

Description

The LIST METRIX command displays all the performance metrics (tables) stored
in the record descriptor table of the PERFDAT configuration database.

The record descriptor table of the PERFDAT configuration database contains the
field descriptors of all predefined performance metrics available for any system
supported by PERFDAT. For more information about the record descriptor table
of the PERFDAT configuration database please refer to the manual VSI PERFDAT
– Architecture and Technical Description.

The metric_name parameter defines the filter for the performance metrics to
be displayed. Full wildcard support is provided. Asterisk (*) and per cent sign (%)
wildcard characters can be placed anywhere within the metric_name string. If
you omit the metric_name parameter a full wildcard operation is performed.

The OSTYPE clause is optional and can be used to filter for performance metrics
of a specific system. The record descriptor table of the PERFDAT configuration
database contains predefined metrics for:

 OpenVMS systems
 Tru64 systems
 EVA storage arrays
 Brocade switches
 Solaris Systems
 Linux systems
 RDB databases
 CACHE databases
 If the VSI PERFDAT API is used by any application the record descriptors

of the metrics accessed by these applications

Thus, in order to display the predefined metrics of only one of these systems
listed above apply one these keywords in the OSTYPE clause:

 OpenVMS
 Tru64
 EVA
 Brocade

LIST METRIX

DO-DPDDQL-01A - 106 – Version 4.8

 Solaris
 Linux
 RDB
 CACHE
 Name of the application that uses the VSI PERFDAT API

Examples

Example 1

In this example all predefined metrics stored in the record descriptor table of
the PERFDAT configuration database are displayed.

DQL> LIST METRIX;

Predefined Metrics for OS: EVA
--

ARRAY
CTRL
CTRL.HOSTCONN
CTRL.PORT
DISKGROUP
DISKGROUP.PDISK
DISKGROUP.VDISK
DRM.TUNNEL

Predefined Metrics for OS: RDB

--
CACHE
CACHE.UNMARK
INDEX.HASH
INDEX.INSERTION
INDEX.REMOVAL
INDEX.RETRIEVAL
IO.ASYNCH_IO
IO.FETCH
IO.FILE
IO.PREFETCH
IO.STALL_IO
JOURNAL.2PC
JOURNAL.AIJ
JOURNAL.ALS
JOURNAL.DBR
JOURNAL.RUJ
LOCK.TYPE
LOGNAM
OBJECT.TYPE
RECORD
SNAPSHOT
STALLS
TRANS
TRANS.HISTOGRAMM

LIST METRIX

DO-DPDDQL-01A - 107 – Version 4.8

Predefined Metrics for OS: CACHE
--

CACHE

Predefined Metrics for OS: LINUX
--

LINUX_DEAMON
LINUX_FILESYS
LINUX_IP
LINUX_NIC
LINUX_PROCESS
LINUX_SYSTEM
LINUX_TCP

Predefined Metrics for OS: TRU64

TRU64_CPU
TRU64_DEAMON
TRU64_DISK
TRU64_FILESYS
TRU64_IP
TRU64_NIC
TRU64_PROCESS
TRU64_SYSTEM
TRU64_USER

Predefined Metrics for OS: BROCADE

--
PORT
SYSTEM

Predefined Metrics for OS: OPENVMS

--
ACCOUNT
CPU
DEVICE
DEVICE.CAPACITY
DEVICE.FILE
DEVICE.IOSIZE
DEVICE.PATH
DEVICE.PROCESS
DEVICE.PROCESS.FILE
IMAGE
IOPATHES
LANADAPTER
LANADAPTER.DEVICE
LANPROTOCOL
PROCESS
SCSPORT
SCSPORT.VC
SCSPORT.VC.CHANNEL
SYSTEM
USER
XFCVOLUME
XFCVOLUME.FILE
XFCVOLUME.FILE.IOSIZE
XFCVOLUME.IOSIZE

LIST METRIX

DO-DPDDQL-01A - 108 – Version 4.8

Predefined Metrics for OS: SOLARIS

--
SUN_DEAMON
SUN_DEVICE
 SUN_FILESYS
 SUN_IP
SUN_NIC
SUN_PROCESS
SUN_SYSTEM
SUN_TCP

Example 2

In this example all predefined device metrics for OpenVMS stored in the record
descriptor table of the PERFDAT configuration database are displayed.

DQL> LIST METRIX ALIAS DEVICE* OSTYPE OpenVMS;

Predefined Metrics for OS: OPENVMS
--

DEVICE
DEVICE.CAPACITY
DEVICE.FILE
DEVICE.IOSIZE
DEVICE.PATH
DEVICE.PROCESS
DEVICE.PROCESS.FILE

LIST STATISTICS

DO-DPDDQL-01A - 109 – Version 4.8

LIST STATISTICS

The LIST STATISTICS command displays the statistics stored in the record
description table of the PERFDAT configuration database and the user-defined
statistics (stored procedures) of a particular performance metric (table). The
field name, datatype, field length and the field description is displayed.

Format

LIST STATISTICS FROM metric_name
OSTYPE OS_name [NODE] node_name;

Description

The LIST STATISTICS command displays the statistics stored in the record
description table of the PERFDAT configuration database and the user-defined
statistics (stored procedures) stored in its stored procedure table of a particular
performance metric (table). The field name, datatype, field length and the field
description is displayed.

The record descriptor table of the PERFDAT configuration database contains the
field descriptors of all predefined performance metrics available for any system
supported by PERFDAT. The stored procedure table of the PERFDAT
configuration database contains all user-defined statistics and the associated
parameters configured by the user via the DQL$ utility. User-defined statistics
are calculated values that can be accessed by all users that are connected to
access servers that share the same PERFDAT configuration database as if these
statistics are part of a collection database. For more information about the
record descriptor table und stored procedure table of the PERFDAT
configuration database please refer to the manual VSI PERFDAT – Architecture
and Technical Description.

The OSTYPE clause defines the system type the metric defined by the
metric_name parameter is member of. The record descriptor table of the
PERFDAT configuration database contains predefined metrics for:

 OpenVMS systems
 Tru64 systems
 EVA storage arrays
 Brocade switches
 Solaris Systems
 Linux systems
 RDB databases
 CACHE databases
 If the VSI PERFDAT API is used by any application the record descriptors

of the metrics accessed by these applications

LIST STATISTICS

DO-DPDDQL-01A - 110 – Version 4.8

Thus, valid keywords for the OS_name parameter are:

 OpenVMS
 Tru64
 EVA
 Brocade
 Solaris
 Linux
 RDB
 CACHE
 Name of the application that uses the VSI PERFDAT API

The NODE clause is optional. It can be applied to display the statistics of a
particular metric valid for a specific node. The LIST STATISTICS displays the
statistics of a particular metric stored in the record descriptor table of the
PERFDAT configuration database as well as the user-defined statistics (stored
procedures) stored in its stored procedure table. User-defined statistics can be
defined generic for a specific system (OSTYPE) as well as node specific. If you
omit the NODE clause the generic defined user-defined statistics are displayed.
If you define a specific node using the NODE clause the generic and the node
specific user-defined statistics valid for the node you applied are displayed.

For more information about user-defined statistics please refer to the DEFINE
PROCEDURE command description.

Examples

Example 1

In this example the statistics of the process metric of OpenVMS are displayed.
Since the NODE clause is omitted only generic user statistics are displayed.

DQL> LIST STATISTICS FROM PROCESS OSTYPE OpenVMS;

Field definitions of Metric: PROCESS

FieldName Type Description
------------- ------- --------------

PrcName STRING(32) [P] ProcessName
$iCpuNorm FLOAT(4) [C] CPU Load normalized [0..100%]
Time DATETIME(8) Time
UserName STRING(16) [I] User Name Reference
ImageName STRING(256) [I] Image Name Reference
iDIO FLOAT(4) Direct IO rate
iBIO FLOAT(4) Buffered IO rate
iGlbMem FLOAT(4) Gbl Memory allocated by image
iPrcMem FLOAT(4) Private Memory allocated by image

LIST STATISTICS

DO-DPDDQL-01A - 111 – Version 4.8

iPfl FLOAT(4) PFL total
iPflFOR FLOAT(4) PFL on read faults
iPflFOW FLOAT(4) PFL on write faults
iPflFOE FLOAT(4) PFL on executive fault
iPageIO FLOAT(4) IO PageIOs
iCpuLoad FLOAT(4) CPU Load total
iKernel FLOAT(4) CPU Mode kernel
iExec FLOAT(4) CPU Mode exec
iSuper FLOAT(4) CPU Mode super
iUser FLOAT(4) CPU Mode user
iIOthres FLOAT(4) IO request threshold
iMemthres FLOAT(4) Memory usage threshold
iCputhres FLOAT(4) CPU load threshold

Element count 0

All fields marked with [P] are members of the element key (index), and the fields
marked with [C] are user-defined statistics.All fields marked with [I] are
informational fields. These fields are not visible to the GUI.

In the exampleone user-defined statistics is listed since only one generic user-
defined statistics exists in the stored procedure table of the PERFDAT
configuration database for the process metric of OpenVMS.

DQL> SHOW PROCEDURE * METRIX PROCESS OSTYPE OPENVMS;

Generic Stored Procedures valid for all nodes of OS Type: OPENVMS

Metrix: PROCESS $iCpuNorm = iCpuLoad / iCpus
Dscr: CPU load normalized [0..100%], Unit: [%]

Node specific stored Procedures valid for OS Type: OPENVMS

Metrix: PROCESS
Node: VMSTM1 $iExecNorm= iExec / iCpus

Dscr: CPU exec mode normalized [0..100%], Unit: [%]
Node: VMSTM1 $iUserNorm= iUser / iCpus

Dscr: CPU user mode normalized [0..100%], Unit: [%]

Example 2

As you can see from the output of the SHOW PROCEDURE command in example
1 there exists one generic and two node specific user statistics for node
VMSTM1. Thus, if you recall the LIST STATISTICS command from example 1 and
additionally apply VMSTM1 in the NODE clause all three user-defined statistics
are displayed.

LIST STATISTICS

DO-DPDDQL-01A - 112 – Version 4.8

DQL> LIST STATISTICS FROM PROCESS OSTYPE OpenVMS NODE VMSTM1;

Field definitions of Metric: PROCESS

FieldName Type Description
------------- ------- --------------

PrcName STRING(32) [P] ProcessName
$iCpuNorm FLOAT(4) [C] CPU Load normalized [0..100%]
$iExecNorm FLOAT(4) [C] CPU exec mode normalized [0..100%]
$iUserNorm FLOAT(4) [C] CPU user mode normalized [0..100%]
Time DATETIME(8) Time
UserName STRING(16) [I] User Name Reference
ImageName STRING(256) [I] Image Name Reference
iDIO FLOAT(4) Direct IO rate
iBIO FLOAT(4) Buffered IO rate
iGlbMem FLOAT(4) Gbl Memory allocated by image
iPrcMem FLOAT(4) Private Memory allocated by image
iPfl FLOAT(4) PFL total
iPflFOR FLOAT(4) PFL on read faults
iPflFOW FLOAT(4) PFL on write faults
iPflFOE FLOAT(4) PFL on executive fault
iPageIO FLOAT(4) IO PageIOs
iCpuLoad FLOAT(4) CPU Load total
iKernel FLOAT(4) CPU Mode kernel
iExec FLOAT(4) CPU Mode exec
iSuper FLOAT(4) CPU Mode super
iUser FLOAT(4) CPU Mode user
iIOthres FLOAT(4) IO request threshold
iMemthres FLOAT(4) Memory usage threshold
iCputhres FLOAT(4) CPU load threshold

Element count 0

All fields marked with [P] are members of the element key (index), and the fields
marked with [C] are user-defined statistics.All fields marked with [I] are
informational fields. These fields are not visible to the GUI.

LOAD

DO-DPDDQL-01A - 113 – Version 4.8

LOAD

This command loads data of valid CSV files into an existing collection database.

Format

LOAD file_name AS metric
[DESCRIBED BY descriptor_filename]

TARGET DATABASE alias_name
[FORMAT] { SINGLE_LINE | MULTI_LINE };

Description

This command loads data of valid CSV files into an existing collection database.

The content of CSV files with two different layouts can be loaded (see also the
EXPORT command description). The optional FORMAT clause defines the layout
of the input CSV files addressed by the MAP command. Valid keywords are
SINGLE_LINE and MULTI_LINE. If the FORMAT clause is omitted the default
layout format is SINGLE_LINE:

 SINGLE_LINE
The layout of the CSV file has to fulfill the following criteria:

1. The first line lists all nodes the content of CSV file belongs to.
2. The second line contains the column headers. Each column

contains the data of a dedicated statistics and element. Thus,
the element name and the statistics name have to be encoded
in the header of the each column. The supported header
formats are:

ElementName.StatisticsName
ElementName.StatisticsName
StatisticsName.ElementName
StatisticsName.ElementName

As you can see the statistics name can be placed in front or
after the element name string separated by a dot (.) or not. The
only exception of the rule is the column that contains the
timestamp (see below).

3. Each data row has to contain as many data values as columns
defined by the column header.

4. At least one column must contain timestamps and the column
header has to match the wildcard string *Time or Time*.

5. The max. length of a record in the CSV file may not exceed
32767 bytes.

6. The rows of the CSV file have to be sorted ascending by the
column that contains the timestamps.

LOAD

DO-DPDDQL-01A - 114 – Version 4.8

7. A record descriptor must exist that describes the CSV file
records –either in a descriptor file or in the CSV mapping
database.

8. The time field of each record has to be unique throughout the
whole CSV file.

 MULTI_LINE

The layout of the CSV file has to fulfill the following criteria:
1. The first line lists all nodes the content of CSV file belongs to.
2. The second line contains the column headers - one header item

per column. The maximum length of a header item is limited to
64 characters.

3. One column header field has to be named TIME. This column
contains the timestamps of the data records in OpenVMS
date/time format.

4. The maximum number of columns is limited to 200.
5. The max. length of a record in the CSV file may not exceed

32767 bytes.
6. The rows of the CSV file have to be sorted ascending by the

TIME column.
7. A record descriptor must exist that describes the CSV file

records –either in a descriptor file or in the CSV mapping
database.

8. Several rows can co-exist with the same timestamp as long as
the rows refer different elements. In that case 1 to max 3
columns must exist that defines the element key. Which
columns are parts of the element key is defined in the mapping
descriptor file (see the section Descriptor file of the MAP
command description). With other words each data record has
to be unique with respect to the element key or the timestamp.

 T4

The CSV files were created by the T4 utility. The T4 format is similar to
the SINGLE_LINE format. The only difference is that two extra header
lines exist. Thus, a T4 formatted CSV file has to fulfil the criteria:

1. The first line lists all nodes the content of CSV file belongs to.
2. The fourth line contains the column headers. Each column

contains the data of a dedicated statistics and element. Thus,
the element name and the statistics name have to be encoded
in the header of each column. The supported header formats
are:

ElementName.StatisticsName
ElementName.StatisticsName
StatisticsName.ElementName
StatisticsName.ElementName

As you can see the statistics name can be placed in front or
after the element name string separated by a dot (.) or not. The

LOAD

DO-DPDDQL-01A - 115 – Version 4.8

only exception of the rule is the column that contains the
timestamp (see below).

3. Each data row has to contain as many data values as columns
defined by the column header.

4. At least one column must contain timestamps and the column
header has to match the wildcard string *Time or Time*.

5. The max. length of a record in the CSV file may not exceed
32767 bytes.

6. The rows of the CSV file have to be sorted ascending by the
column that contains the timestamps.

7. A record descriptor must exist that describes the CSV file
records –either in a descriptor file or in the CSV mapping
database (see the Descriptor file section of the MAP command
description).

8. The time field of each record has to be unique throughout the
whole CSV file.

Any CSV file created by the T4 utility fulfils the criteria 1-6, 8. Thus,
in order to load T4 files you have to create appropriate descriptor
files. Such descriptor files will be provided by the next releases of
PERFDAT.

For more information about valid CSV files see the MAP command description.

The LOAD command is similar to the IMPORT command. The main difference
between the LOAD and the IMPORT command is that data loaded by the LOAD
command are not pre-processed before they are inserted.

The LOAD command should only be used if the timestamps in the CSV file(s)
match exactly the timestamps stored in the target collection database, or the
CSV data shall be inserted to an empty collection database manually created.
Otherwise it is recommended to use the IMPORTcommand. The LOAD
command consumes less system resources and is faster than the
IMPORTcommand.

The file_name parameter specifies the full file name of the CSV files to be
inserted. Asterisk (*) and percent sign (%) wildcard characters can be placed
anywhere within the file name string to load several CSV files at once.

The metric parameter of the AS clause specifies the name of the metric (table)
to be created in the physical storage areas of the existing collection database.
The CSV data will be stored within that metric (table).

The collection database to load the CSV data is specified by the TARGET
DATABASE clause. Enter the collection database alias of the target database.
That database alias can’t be user-defined. DQL$ assigns these aliases when it
starts up automatically. The collection database aliases available are displayed
when you apply the SHOW DATABASE command. These aliases have the format:

LOAD

DO-DPDDQL-01A - 116 – Version 4.8

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

The target collection database does not have to be attached before applying the
LOAD command. The target collection database will be automatically attached.

In order to load CSV file content a record descriptor is required that defines the
(field) layout of the CSV file(s).

The optional DESCRIBED BY clause specifies the CSV descriptor file containing
the record descriptor for the CSV files to insert. Depending if an entry with the
name specified by the AS clause already exists in the CSV mapping database or a
metric with the same name exists in the PERFDAT configuration database, this
clause can be omitted or not. If you omit this clause DQL$ searches for the
metric descriptor defined by the AS clause in the record descriptor table of the
PERFDAT configuration database. If no such metric descriptor exists DQL$
searches the CSV mapping database for a matching entry. If both checks fail the
LOAD command fails.

For detailed information about record descriptors and descriptor files please see
the descriptor file section of the MAP command description.

Before applying the LOAD command verify that the default regional setting
(format of numbers, date, time and list separator) of the DQL$ session matches
the CSV file format. If it does not use the DEFINE REGION and SET REGION
command to create a matching default regional setting. For more information
about regional settings please refer to the DEFINE REGION and SET REGION
command description.

Before DQL$ loads the data it performs the general check:

 It checks if the target collection database exist. If it does not exist the
command fails.

In addition the following checks are performed per CSV file to import:

 It checks if the records of the CSV file are sorted ascending by the TIME

column. If this not the case the data of the CSV file will not be loaded.
 It checks if the target collection database specified by the TARGET

DATABASE clause refers a node that is listed in the first line of the CSV
file. If this not the case the CSV file is not valid for the node and the data
are not loaded.

 It checks if the metric defined by the AS clause already exists in the
physical storage areas of the target collection database. If this is the
case and the record descriptor does not match the existing metric
definition the command fails.

LOAD

DO-DPDDQL-01A - 117 – Version 4.8

 It checks if physical storage areas of the target collection database exist
that cover the time range or parts of it defined by the timestamps in the
TIME column of the CSV file. It does not matter if the physical storage
areas contain data or not, but they have to exist. Otherwise no record is
loaded.

 If checks if the list separator of the default regional setting of the
current DQL$ session is found in the CSV file to load. If this is not the
case the default regional setting does not match the format of the CSV
file and the command fails.

LOAD

DO-DPDDQL-01A - 118 – Version 4.8

Example

This example shows how to load existing CSV files into an existing collection
database. The target database SPHINX_DEFAULT consists of the logical storage
area 25-AUG-2005 which in turn consists of one physical storage area previously
created (see CREATE STORAGE AREA command example). The metric (table)
SPHINX has been added to the physical storage area using the CREATE METRIX
command (see CREATE METRIX command example). The layout of the input CSV
files is MULTI_LINE. Thus, the FORMAT clause is entered with the keyword
MULTI_LINE.

DQL> LOAD PERFDAT$DB_ARCHIVE:*.CSV AS SPHINX
cont> DESCRIBED BY PERFDAT$DB_ARCHIVE:SPHINX_DSC.CFG
cont> TARGET DATABASE SPHINX_DEFAULT
cont> FORMAT MULTI_LINE;

DQL-I-LOAD, loading data from file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_AUG_2000.CSV;2/
DQL-I-GETELEM, fetching elements from source file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_AUG_2000.CSV;2/
DQL-I-LOAD, loading Metrix /SPHINX/ in storage area /SPHINX_DEFAULT_2005-08-25:00:00:00:1/
DQL-I-CREATEMETRIX, metrix already exists
DQL-I-STARTLOAD, start loading data -> element count: 1
DQL-I-LOAD, file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_AUG_2000.CSV;2/successfully loaded

DQL-I-LOAD, loading data from file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_15_JUL_2000.CSV;6/
DQL-I-GETELEM, fetching elements from source file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_15_JUL_2000.CSV;6/
DQL-W-LOAD, time range of the data stored CSV file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_15_JUL_2000.CSV;6/ not covered by target database
/SPHINX_DEFAULT/
DQL-W-LOAD, file /PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_15_JUL_2000.CSV;6/ not loaded

DQL-I-LOAD, loading data from file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_NOV_2003.CSV;13/
DQL-I-GETELEM, fetching elements from source file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_NOV_2003.CSV;13/
DQL-W-LOAD, time range of the data stored CSV file
/PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_NOV_2003.CSV;13/ not covered by target database
/SPHINX_DEFAULT/
DQL-W-LOAD, file /PERFDAT$COMMON:[ARCHIVE]SXWS_CL0_25_NOV_2003.CSV;13/ not loaded

Due to the statement applied all CSV files of the directory PERFDAT$DB_ARCHIVE
are selected to be loaded into the collection database SPHINX_DEFAULT. Since the
only file that contains records with valid timestamps (within time range of the
target database) is PERFDAT$DB_ARCHIVE:SXWS_CL0_25_AUG_2005.CSV, this is
the only one that is actually loaded. The file load of all other files is denied.

MAP

DO-DPDDQL-01A - 119 – Version 4.8

MAP

This command adds a new entry to the CSV mapping database

Format

MAP FILE file_name
TO COLLECTION collection_profile

AS metrix
 [REGION reg_name]

[DESCRIBED BY descriptor_file]
[FORMAT { SINGLE_LINE | MULTI_LINE }];

General description

This command adds a new entry to the CSV mapping database.

The DQL interface provides the feature to map CSV file content online. Content
mapping means, that the data stored in a particular CSV file is accessible via the
DQL$ interface in the same manner as if data were originally written by the
OpenVMS data collector or the SNMP extension.

CSV file content mapping is done by adding appropriate entries to the CSV
mapping database PERFDAT$CFG:CSV_PROFILE.CFG. These entries are read by
DQL$SRV which actually maps the data of the CSV file.

This feature provides the ability to include foreign data(= not written by the
data collectors) easily.

CSV files with two different layouts can be mapped (see also the EXPORT
command description). The FORMAT clause defines the layout of the input CSV
files addressed by the MAP command. Valid keywords are SINGLE_LINE and
MULTI_LINE. If the FORMAT clause is omitted the default layout format is
SINGLE_LINE:

 SINGLE_LINE
The layout of the CSV file has to fulfill the following criteria:

1. The first line lists all nodes the content of CSV file belongs to.
2. The second line contains the column headers. Each column

contains the data of a dedicated statistics and element. Thus,
the element name and the statistics name have to be encoded
in the header of each column. The supported header formats
are:

ElementName.StatisticsName
ElementName.StatisticsName
StatisticsName.ElementName

MAP

DO-DPDDQL-01A - 120 – Version 4.8

StatisticsName.ElementName
As you can see the statistics name can be placed in front or
after the element name string separated by a dot (.) or not. The
only exception of the rule is the column that contains the
timestamp (see below).

3. Each data row has to contain as many data values as columns
defined by the column header.

4. At least one column must contain timestamps and the column
header has to match the wildcard string *Time or Time*.

5. The max. length of a record in the CSV file may not exceed
32767 bytes.

6. The rows of the CSV file have to be sorted ascending by the
column that contains the timestamps.

7. A record descriptor must exist that describes the CSV file
records –either in a descriptor file or in the CSV mapping
database (see the Descriptor file section).

8. The time field of each record has to be unique throughout the
whole CSV file.

 MULTI_LINE

The layout of the CSV file has to fulfill the following criteria:
1. The first line lists all nodes the content of CSV file belongs to.
2. The second line contains the column headers - one header item

per column. The maximum length of a header item is limited to
64 characters.

3. One column header field has to be named TIME. This column
contains the timestamps of the data records in OpenVMS
date/time format.

4. The maximum number of columns is limited to 200.
5. The max. length of a record in the CSV file may not exceed

32767 bytes.
6. The rows of the CSV file have to be sorted ascending by the

TIME column.
7. A record descriptor must exist that describes the CSV file

records –either in a descriptor file or in the CSV mapping
database.

8. Several rows can co-exist with the same timestamp as long as
the rows refer different elements. In that case 1 to max 3
columns must exist that defines the element key.Which
columns are parts of the element key is defined in the mapping
descriptor file (see the Descriptor file section). With other
words each data record has to be unique with respect to the
element key or the timestamp.

 T4

The CSV files were created by the T4 utility. The T4 format is similar to
the SINGLE_LINE format. The only difference is that two extra header
lines exist. Thus, a T4 formatted CSV file has to fulfil the criteria:

MAP

DO-DPDDQL-01A - 121 – Version 4.8

1. The first line lists all nodes the content of CSV file belongs to.
2. The fourth line contains the column headers. Each column

contains the data of a dedicated statistics and element. Thus,
the element name and the statistics name have to be encoded
in the header of each column. The supported header formats
are:

ElementName.StatisticsName
ElementName.StatisticsName
StatisticsName.ElementName
StatisticsName.ElementName

As you can see the statistics name can be placed in front or
after the element name string separated by a dot (.) or not. The
only exception of the rule is the column that contains the
timestamp (see below).

3. Each data row has to contain as many data values as columns
defined by the column header.

4. At least one column must contain timestamps and the column
header has to match the wildcard string *Time or Time*.

5. The maximum length of a record in the CSV file may not exceed
32767 bytes.

6. The rows of the CSV file have to be sorted ascending by the
column that contains the timestamps.

7. A record descriptor must exist that describes the CSV file
records –either in a descriptor file or in the CSV mapping
database (see the Descriptor file section).

8. The time field of each record has to be unique throughout the
whole CSV file.

Any CSV file created by the T4 utility fulfils the criteria 1-6, 8. Thus,
in order to map T4 files you have to create appropriate descriptor
files. Such descriptor files will be provided by the next releases of
PERFDAT.

It does not matter if the CSV file includes data of different days. DQL splits the
file virtually in order to map the CSV file content to the database scheme.

Mapped CSV files are only read accessible.

CSV data content can't be correlated with other CSV file content or data content
created by the OpenVMS data collector or SNMP extension. If you want to use
the correlation feature you have to import/load CSV file content into an existing
collection database. CSV files are not processed by the auto archiving process.
Data management of mapped CSV files is left to system management.

CSV file mappings are only valid on the node where the mapping is done but the
CSV content can be accessed by any member of the community the node that
hosts the CSV file belongs to in case the node(s) listed in the first line of the CSV
file are also member(s) of the community.

MAP

DO-DPDDQL-01A - 122 – Version 4.8

Statement description

This command adds a new entry to the CSV mapping database

The file_name parameter specifies the full file name of the CSV files to be
mapped. Asterisk (*) and percent sign (%) wildcard characters can be placed
anywhere within the file name string to map several CSV files at once.

The TO COLLECTION clause specifies the collection profile the CSV files are
mapped to. If more than one node is listed in the first line of the CSV files, the
CSV files becomes member of different collection databases. E.g. the collection
profile specified is 60S, and the nodes defined in the first line of the CSV files are
SIFNOS, VMSTM1. The CSV files become member of the collection databases
SIFNOS_60S and VMSTM1_60S. It is not required that the collection profile
specified exists in the collection profile table of the PERFDAT configuration
database. You can enter any name. If you choose an existing profile name the
CSV mapping will become a member (physical storage area) of existing
collection database(s).If you enter a non-existing profile name the CSV content
will be visible as a standalone collection database.

The metrix parameter in the AS clause specifies the virtual metric (table) DQL$
uses to address the CSV file content and the entry in the CSV file mapping
database.

The reg_name parameter in the optional REGION clause defines the regional
setting that matches the format of the CSV file.. A regional setting defines the
format of numbers, date and time in the CSV file and the list separator used. If
you omit the REGION clause the default regional setting on the local host is
used. If the regional setting does not match the format of the CSV content the
result of the mapping will be unpredictable. To get more information about
regional settings please refer to the DEFINE REGION and SET REGION command
description.

In order to map CSV file content a record descriptor is required to define the
(record) layout of the CSV file(s).

The optional DESCRIBED BY clause specifies the CSV descriptor file containing
the record descriptor for the CSV files to map. Depending if an entry with the
name specified by the METRIX clause already exists in the CSV mapping
database, this clause can be omitted or not. If you omit this clause DQL$
searches for the entry defined by the METRIX clause in the CSV mapping
database and adds the CSV files defined to that entry. If no such entry exists the
CSV files are not mapped. If the DESCRIBED BY clause is defined DQL$ performs
the following actions:

 It checks if the CSV mapping descriptor file defined exists.
 It checks if a record descriptor as defined by the METRIX clause exists in

that file. If this check fails, the user is informed and no mapping is done.

MAP

DO-DPDDQL-01A - 123 – Version 4.8

 It checks if an entry in the CSV file mapping database already exists that
matches the name defined by the METRIX clause.

o If no such file mapping entry exists, DQL$ creates a new entry
and stores the record descriptor in that entry.

o If a CSV file mapping entry already exists, DQL checks if the
record descriptor in the descriptor file matches with the record
descriptor stored in the CSV mapping entry. If this check fails no
mapping is done.

Thus, if you are about to add new CSV files to an existing mapping definition you
can omit the DESCRIBED BY clause. If you want to add a new mapping definition
(entry) to the CSV mapping database the DESCRIBED BY clause is mandatory.

The FORMAT clause defines the layout of the input CSV files addressed by the
MAP command. Valid keywords are SINGLE_LINE and MULTI_LINE. For more
information about these layout options and the criteria CSV files have to fulfil in
either of the cases please refer to the General description section. If you omit
the FORMAT clause the SINGLE_LINE layout is assumed. If the CSV files
addressed by the MAP command do not fulfil the criteria of the layout defined
the result of the mapping will be unpredictable.

Once the command succeeds the mapped CSV files are immediately visible to
the current DQL$ session and can be accessed. Any DQL$ session started
afterwards on the node the mapping was defined can access the CSV data files
as if these data are part of the distributed collection database without any
additional user action until the CSV mapping is manually removed from the CSV
mapping database.

If the CSV files mapped are not accessible although the command succeeds it is
very likely that the data content is corrupt (data content is not checked by the
MAP command). In that case it is recommended to run the CHECK FILE MAP
command to find out what is wrong.

Descriptor file

In order to map CSV file content a record descriptor is required to define the
(record) layout of the CSV file(s). Record descriptors are defined within so called
descriptor files. A descriptor file can contain 1…n record descriptors.

As explained in the general description section CSV files that are valid for CSV
file mapping contains the column headers in its second line. The column
headers are the linkage to the content of the record descriptor.

A record descriptor starts with the keyword “METRIX_metricname:”, and ends
with the “METRIX_metricname_END:” keyword. The metric name parameter
has to match the metric defined by the METRIX clause in the MAP FILE
statement.

MAP

DO-DPDDQL-01A - 124 – Version 4.8

In case the layout of the CSV file(s) to map is MULTI_LINE all field descriptors
(statistics) defined in the record descriptor have to exist in the mapped CSV
file(s). If the layout is SINGLE_LINE the mapping is valid if at least one field
descriptor (statistics) exists in the input CSV file(s).

One field descriptor is defined per line. A field descriptor has the general form:

FieldName:DataType|DataOption:DataLength:FieldDescr: Unit:

As you can see from the line above a Field descriptor consists of five mean
parameters separated by a colon (“:”):

 FieldName

Max. length is 16 characters long. This is the internal name DQL uses to
address the field in the records of the CSV files. Depending if the layout
of the input CSV file(s) is SINGLE_LINE or MULTI_LINE different criteria
are applied for searching the corresponding data column in the mapped
CSV file(s).

o SINGLE_LINE
As described in the General description section each column of
a CSV file with SINGLE_LINE layout contains data of a dedicated
statistics and element. Thus, the element name and the
statistics name have to be encoded in the header of the each
column. The supported header formats for the columns present
are:

ElementName.StatisticsName
ElementName.StatisticsName
StatisticsName.ElementName
StatisticsName.ElementName

At least one column header of the mapped CSV file has to
match the wildcard search *FieldName or FieldName*. If one of
the wildcard searches succeeds the element name is extracted
from the column header string by removing the FileName string.
If the wildcard searches fail the same wildcard searches are
performed using the FieldDesc parameter. If one of these
wildcard searches succeeds the element name is extracted by
removing the FieldDesc string from the column header. It is
important to keep in mind that due to the fact that a column of
a CSV file with SINGLE_LINE layout contains data of a dedicated
statistics and element multiple columns can be addressed by
one field descriptor since data of the statistics defined by the
field descriptor are probably present for several elements in the
CSV file. Thus, there exists no rule that the columns of the CSV
file mapped have to be ordered in a special way like CSV files
with MULTI_LINE layout. In addition the input CSV file can
contain several columns that are not addressed by the record
descriptor.

MAP

DO-DPDDQL-01A - 125 – Version 4.8

The data reference rule explained above is applied to any field
descriptor present in the record descriptor but the field
descriptor that refers the timestamps. As described in the
General description section the column of the mapped CSV file
that contains the timestamps have to match one of the wildcard
searches *Time or Time* and the corresponding FieldName
parameter of the field descriptor within the record descriptor
that refers the timestamp column has to match the same
criteria.

o MULTI_LINE
Either this or the FieldDesc parameter has to exactly match with
the column header of the CSV file at the same position. The first
field descriptor in the descriptor file refers to the first column of
the CSV file the second field descriptor refers to the second
column and so on.

 DataType|DataOption

o DataType
Data type of the field. Possible keywords are:
 FIELD$_STRING string type
 FIELD$_INTEGER integer type
 FIELD$_UNSIGNED unsigned integer type
 FIELD$_QUAD quadword type
 FIELD$_FLOAT float type
 FIELD$_DATETIME date/time type

o DataOption
This parameter is optional. Keywords allowed are:
 FIELD$_PRIMKEY

Apply this data option keyword only if the record
descriptor is used to map MULTI_LINE layout CSV files.
If the layout of the CSV file is SINGLE_LINE do not use
this data option keyword. It indicates that the content
of the field is part of the element key DQL shall use to
address the elements stored in the CSV file. This field
option can be assigned to max. 3 fields. Assigning this
field option to more than 3 fields the behavior of DQL
will be unpredictable.If this data option keyword is not
assigned to any field descriptor and the record
descriptor is applied to a MULTI_LINE layout CSV file the
timestamps in the mapped CSV file has to unique. In
that case DQL assumes that the CSV file contains data of
just one element and the metric name defined by the
AS clause when mapping CSV files is assigned to that
single element.

 FIELD$_INFO
This data option indicates that thefield content is only
informational, and will not be visible to the GUI.

MAP

DO-DPDDQL-01A - 126 – Version 4.8

Use the OR (|) sign to separate the DataType and DataOption.
You can enter only one DataType but both DataOptions within a
field descriptor.
Example:

FIELD$_STRING|FIELD$_PRIMKEY|FIELD$_INFO
The data field is a string, part of the element key and not visible
to the GUI.

 DataLength

This parameter defines the length of the field in bytes.

Note

If the type of a field is FIELD$_DATETIME, always enter 8 (quad-word
length).

 FieldDesc

Any comment that describes the content of the column in the CSV
file(s). The string length is limited to 64 characters. As described above
(description of the FieldName parameter) FieldDesc can be used to refer
corresponding data columns in the mapped CSV file(s).

 Unit (optional)
Specifies the unit of the data field (e.g. 1/s, MB, sec …).

Any valid record descriptor has to contain at least one statistics (data field)

 called TIME if the record descriptor shall be applied to CSV files with
MULTI_LINE layout

 that matches the wildcard search string *Time or Time* is the record
descriptor shall be applied to CSV files with SINGLE_LINE layout

That statistics refers the data column of the input CVS file(s) that contains the
timestamps. The maximum number of statistics (data fields) defined by a record
descriptor is 200. If record descriptor exceeds the maximum number of statistics
or it contains no TIME data field the MAP command fails.

Examples

Example for a valid CSV file with SINGLE_LINE layout

SIFNOS,VNATIG
Time, BCSXTC.iData1, BCSXTC.iData2, VNOABS.iData1, VNOABS.iData2
13-JUL-2003 10:00, 1, 5, 0, 0
13-JUL-2003 10:04, 1, 7, 0, 0
13-JUL-2003 10:08, 0, 8, 4, 8
13-JUL-2003 10:12, 3, 1, 13, 7
13-JUL-2003 10:14, 0, 0, 8, 19
13-JUL-2003 10:16, 0, 0, 8, 8

MAP

DO-DPDDQL-01A - 127 – Version 4.8

The first line defines the nodes the CSV file belongs (is visible) to (node SIFNOS
and VNATIG). The second line contains the column headers, followed by the
data records. The timestamps in the ‘Time ’column are unique as required for
single line CSV files. Which fields of the record are actually mapped depends on
the record descriptor.

Example for a valid CSV file with MULTI_LINE layout

SIFNOS,VNATIG
sKey, Time, iData1, iData2
BCSXTC, 13-JUL-2003 10:00, 1,5
BCSXTC, 13-JUL-2003 10:04, 1,7
VNOABS, 13-JUL-2003 10:08, 0,8
BCSXTC, 13-JUL-2003 10:08, 4,8
VNOABS, 13-JUL-2003 10:12, 13,7
BCSXTC, 13-JUL-2003 10:12, 3,1
VNOABS, 13-JUL-2003 10:14, 8, 19
VNOABS, 13-JUL-2003 10:16, 8, 8

The first line defines the nodes the CSV file belongs (is visible) to (node SIFNOS
and VNATIG). The second line contains the column headers, followed by the
data records. There are several rows that contain the same timestamp. This
does not matter as long as the rows refer different elements. Which fields of the
record are part of the element key or if no element key is available depends on
the record descriptor used to map this file. If duplicates (element key and
timestamp of different rows match) are detected due to the record descriptor in
use the file map command fails.

MAP

DO-DPDDQL-01A - 128 – Version 4.8

Record descriptor example

The record descriptor differs depending of you want to map the CSV file with
MULTI_LINE layout or the CSV file with SINGLE_LINE layout as sown above.

 SINGLE_LINE layout:

METRIX_USERDEFINED:

Time: FIELD$_DATATIME: 8: Time: [sec]:
iData1: FIELD$_FLOAT: 4: Desc. of iData1: [1/s]:
iData2: FIELD$_FLOAT: 4: Desc. of iData2: [1/s]:

METRIX_USERDEFINED_END:

The record descriptor in this example defines the fields:

Time, iData1, iData2

The content of the CSV files that is mapped to the distributed collection
database using this record descriptor will be accessible via the metric
USERDEFINED.

This record descriptor is valid to map the single line formatted CSV file
shown in the example before (Example for a valid CSV file with
SINGLE_LINE layout) since the all field name wildcard searches applied
to the CSV file as described in the Descriptor file section (*Time,
*iData1, *iData2) matches CSV column headers. Even if just one field
descriptor except the time field descriptor would refer a column of the
example CSV file the file mapping would be valid.

Due to the element detection algorithm used (see Descriptor file
section) the CSV file example (example for a valid CSV file with
SINGLE_LINE layout) contains 2 elements (= index to the appropriate
data records of the CSV file) if this record descriptor is used to map the
CSV file:

o BCSXTC
o VNOABS

 MULTI_LINE layout:

METRIX_USERDEFINED:

sKey: FIELD$_STRING | FIELD$_PRIMKEY: 16: Primary key: N/A:
Time: FIELD$_DATATIME: 8: Time: [sec]:
iData1: FIELD$_FLOAT: 4: Desc. of iData1: [1/s]:
iData2: FIELD$_FLOAT: 4: Desc. of iData2: [1/s]:

METRIX_USERDEFINED_END:

MAP

DO-DPDDQL-01A - 129 – Version 4.8

The record descriptor in this example defines the fields:

sKey, Time, iData1, iData2

The content of the CSV files that is mapped to the distributed collection
database using this record descriptor will be accessible via the metric
USERDEFINED.

This record descriptor is valid to map the multi-line CSV file as shown in
example before (example for a valid CSV file with MULTI_LINE
layout)since the field names in the record descriptor matches the CSV
column headers. Due to the record descriptor definitions (primary key
field definitions) no duplicates exist (no element key and timestamp of
different rows match) in the CSV file.

If this record descriptor is used to map the CSV file shown in the CSV file
example (example for a valid CSV file with MULTI_LINE layout) the data
file consists of 2 elements (= index to the appropriate data records of
the CSV file):

o BCSXTC
o VNOABS

When you look at the CSV file shown in the CSV file example (example
for a valid CSV file with MULTI_LINE layout) you can see that the data
rows does not have to be ordered by the elements but all rows
referenced by one element have to be sorted ascending by the time
field.

Command example

DQL> MAP FILE 2DKA05:[PERFDAT.CSV]*.CSV;* TO COLLECTION 2MIN
cont> AS USERDEFINED
cont> REGION DEFAULT
cont> DESCRIBED BY2DKA105:[PERFDAT]REC_DSC.CFG;
DQL-I-MAP, CSV file(s) /2DKA105:[PERFDAT.CSV]*.CSV;*/ successfully mapped

In this example all versions of all files with the extension CSV in the directory
2DKA05:[PERFDAT.CSV] are mapped to the collection profile 2MIN as metric
USERDEFINED.The format (numbers, date, time, list separator) of the CSV files
matches the regional setting DEFAULT.

The record descriptor of metric USERDEFINED is defined in the
file2DKA105:[PERFDAT]REC_DSC.CFG.

MAP

DO-DPDDQL-01A - 130 – Version 4.8

Since the FORMAT clause is missing the layout of the input CSV files is
SINGLE_LINE (for more information about the supported CSV layouts layout
please refer to the General description and Descriptor File section).

If the layout of the input CSV files is MULTI_LINE the FORMAT clause is
mandatory:

DQL> MAP FILE 2DKA05:[PERFDAT.CSV]*.CSV;* TO COLLECTION 2MIN
cont> AS USERDEFINED
cont> REGION DEFAULT
cont> DESCRIBED BY2DKA105:[PERFDAT]REC_DSC.CFG
cont> FORMAT MULTI_LINE;
DQL-I-MAP, CSV file(s) /2DKA105:[PERFDAT.CSV]*.CSV;*/ successfully mapped

REBUILD DATABASE

DO-DPDDQL-01A - 131 – Version 4.8

REBUILD DATABASE

This command rescans the data files of the distributed performance database
stored on all members of the PERFDAT community the local node is member of
for any change and updates the virtual root file created during the start-up
phase of the DQL$ utility.

Format

REBUILD DATABASE;

Description

This command rescans the data files of the distributed performance database
stored on all members of the PERFDAT community the local node is member of
for any change and updates the virtual root file created during the start-up
phase of the DQL$ utility.

Thus, if any physical storage area (data file) has been relocated during the
current DQL$ session this command can be used to keep the virtual root file up
to date.

REMOVE FILE MAP

DO-DPDDQL-01A - 132 – Version 4.8

REMOVE FILE MAP

This command removes (deletes) a particular file mapping entry defined by the
file_map_name parameter from the CSV file mapping database.

Format

REMOVE FILE MAP file_map_name;

Description

This command removes (deletes) a particular file mapping entry defined by the
file_map_name parameter from the CSV file mapping database
PERFDAT$CFG:CSV_PROFILES.CSV.

For more information about CSV file mapping please refer to the MAP command
description.

Example

This example shows how to remove an existing entry named USERDEFINED from
the CSV mapping database.

DQL> REMOVE FILE MAP USERDEFINED;
DQL-I-REMMAP, CSV mapping /USERDEFINED/ successfully removed

REMOVE PROCEDURE

DO-DPDDQL-01A - 133 – Version 4.8

REMOVE PROCEDURE

This command removes (deletes) particular user-defined statistics from the
stored procedure table of the PERFDAT configuration database.

Format

REMOVE PROCEDURE user_defined_statistics

[METRIX metric_name]
[OSTYPE OS_name]

[NODE node_name];

Description

This command removes (deletes) particular user-defined statistics from the
stored procedure table of the PERFDAT configuration database.

The user_defined_statistics parameter defines the user-defined statistics to be
removed (delete). Full wildcard support is provided. Asterisk (*) and percent
sign (%) wildcard characters can be placed anywhere within the
user_defined_statistics string.

The clauses METRIX and OSTYPE are optional. The metric_name parameter
defines the metric the user-defined statistics is member of. The OS_name
parameter defines the operating system the metric defined by the metric_name
parameter is valid for.

All user-defined statistics that match the user_defined_statistics parameter and
the applied METRIX and OSTYPE filter will be deleted.

Note

If you omit the METRIX and OSTYPE filter be aware that if statistics with the
same name were defined for different metrics and operating systems all
these user-defined statistics will be deleted.

The NODE clause specifies the node the user-defined statistics was valid for. If
you omit the NODE clause or you enter a Asterisk (*) wildcard character the
user-defined statistics that matches the METRIX and OSTYPE filter criteria are
deleted from the generic section of the stored procedure table of the PERFDAT
configuration database. Otherwise the appropriate node specific stored
procedure is deleted.

A user-defined statistics can be deleted only if it is not used by another stored
procedure or a within a report profile. If it is used by another stored procedure

REMOVE PROCEDURE

DO-DPDDQL-01A - 134 – Version 4.8

or a within a report profile the remove operation fails and the user gets
informed about the current usage of the user-defined statistics.

Once a user-defined statistics is deleted it will inaccessible immediately for all
users currently connected to the distributed PERFDAT performance database via
one of the node that share the same PERFDAT configuration database as the
current DQL$ session.

For more information about generic and node specific user-defined statistics
please refer to the DEFINE PROCEDURE command description.

Example

In this example all user-defined statistics $iCpu* will be deleted. Since no
METRIX, OSTYPE and NODE filter is provided all user-defined statistics defined
for different metrics and operating systems that matches the wildcard string are
deleted from the generic section of the stored procedure table of the PERFDAT
configuration database.

DQL> SHOW PROCEDURE *;

Generic Stored Procedures valid for all nodes of OS Type: OPENVMS

Metrix: DEVICE.CAPACITY $iFreePerc = ifree/isize*100
 Dscr: Device Free Percentage, Unit: [%]

Metrix: PROCESS $iCpuNorm = iCpuLoad/iCPUs
 Dscr: CPU load normalized, Unit: [%]

Metrix: SYSTEM $iCpuNorm = iCpuLoad / iCpuCnt
 Dscr: CPU load normalized, Unit: [%]
 $iKernExec = iKernel+iExec
 Dscr: Kernel + Exec Mode, Unit: [%]

Generic Stored Procedures valid for all nodes of OS Type: SUNOS

Metrix: SUN_SYSTEM $iCpuNorm = iCpuLoad / iCpuCnt
 Dscr: CPU load normalized, Unit: [%]

Node specific stored Procedures valid for OS Type: OPENVMS

Metrix: PROCESS
 Node: VMSTM1 $iCpuNorm= iCpuLoad / iCpus * 2
 Dscr: CPU exec mode normalized [0..200%], Unit: [%]
 Node: VMSTM1 $iExecNorm= iExec / iCpus
 Dscr: CPU exec mode normalized [0..100%], Unit: [%]
 Node: VMSTM1 $iUserNorm= iUser / iCpus
 Dscr: CPU user mode normalized [0..100%], Unit: [%]

REMOVE PROCEDURE

DO-DPDDQL-01A - 135 – Version 4.8

DQL> REMOVE PROCEDURE $iCpu*;
DQL-I-PROC, generic stored procedure /$iCpuNorm/ for metric /PROCESS/,

OS Type /OPENVMS/removed
DQL-I-PROC, generic stored procedure /$iCpuNorm/ for metric /SYSTEM/,

OS Type /OPENVMS/removed
DQL-I-PROC, generic stored procedure /$iCpuNorm/ for metric /SUN_SYSTEM/,

OS Type /SUNOS/removed

DQL> SHOW PROCEDURE *;

Generic Stored Procedures valid for all nodes of OS Type: OPENVMS

Metrix: DEVICE.CAPACITY $iFreePerc = ifree/isize*100
 Dscr: Device Free Percentage, Unit: [%]

Metrix: SYSTEM $iKernExec = iKernel+iExec
 Dscr: Kernel + Exec Mode, Unit: [%]

Node specific stored Procedures valid for OS Type: OPENVMS

Metrix: PROCESS
 Node: VMSTM1 $iCpuNorm= iCpuLoad / iCpus * 2
 Dscr: CPU exec mode normalized [0..200%], Unit: [%]
 Node: VMSTM1 $iExecNorm= iExec / iCpus
 Dscr: CPU exec mode normalized [0..100%], Unit: [%]
 Node: VMSTM1 $iUserNorm= iUser / iCpus
 Dscr: CPU user mode normalized [0..100%], Unit: [%]

REMOVE REGION

DO-DPDDQL-01A - 136 – Version 4.8

REMOVE REGION

This command removes (deletes) existing regional settings from the regional
setting table of the PERFDAT configuration database.

Format

REMOVE REGION reg_name;

Description

This command removes (deletes) existing regional settings from the regional
setting table of the PERFDAT configuration database.

The reg_name parameter defines the name of the regional settings to be
deleted. If the name of the regional setting was stored case sensitive enter the
reg_name parameter with parenthesis.

If the regional setting is the current default the command fails. In this case use
the SET REGION command to redefine the current default and try again.

When installing PERFDAT the regional setting DEFAULT is automatically applied.
This regional setting cannot be deleted either.

For more information about user-defined statistics please refer to the
description of the DEFINE REGION and SET REGION command.

Example

In this example the regional setting “German” will be deleted. We apply the
SHOW REGION command in advance to check if the regional setting “German”
exists. Since it is displayed case sensitive we enter the regional setting name
with parenthesis.

DQL> SHOW REGION;

 Default region setting:

 Name: DEFAULT
 Decimal Symbol: .
 List Seperator: ,
 Date Format : dd-mmm-yyyy
 sMonths (ASCII): JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

 Available region settings:

Name: DEFAULT

REMOVE REGION

DO-DPDDQL-01A - 137 – Version 4.8

 Decimal Symbol: .
 List Seperator: ,
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

 Name: German
 Decimal Symbol: ,
 List Seperator: ;
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAI,JUN,JUL,AUG,SEP,OKT,NOV,DEZ

DQL> REMOVE REGION "German";
DQL-I-CFGSUCCESS, successfully removed region setting /German/

DQL> SHOW REGION;

 Default region setting:

Name: DEFAULT
 Decimal Symbol: .
 List Seperator: ,
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

 Available region settings:

Name: DEFAULT
 Decimal Symbol: .
 List Seperator: ,
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

REMOVE VIEW

DO-DPDDQL-01A - 138 – Version 4.8

REMOVE VIEW

This command removes (deletes) an existing cluster view.

Format

REMOVE VIEW view_name;

Description

This command removes (deletes) an existing cluster.The view_name parameter
defines the name of the cluster view to be deleted. Apply the SHOW VIEW
command in advance to display the cluster view available.

Once a cluster view is deleted it will inaccessible for all users currently
connected to the distributed PERFDAT performance database via the local node
immediately.

For more information about cluster views please refer to the description of the
DEFINE VIEW command.

Example

In this example the cluster view VIECLU consisting of the collection databases

 BCSXTC_DEFAULT
 VMSTM1_DEFAULT
 VMSTM2_DEFAULT

will be deleted.

DQL>SHOW VIEW;

View referenced Aliases
--

 RLP ADMIN3_DEFAULT
ADMIN4_DEFAULT
TRANS3_DEFAULT
TRANS4_DEFAULT

VIECLU BCSXTC_DEFAULT
 VMSTM1_DEFAULT

VMSTM2_DEFAULT
VMSALL VMSTM2_DEFAULT

VMSTM1_DEFAULT

DQL> REMOVE VIEW VIECLU;
DQL-I-VIEW, view /VIECLU/ removed

DQL> SHOW VIEW;

View referenced Aliases
--

 RLP ADMIN3_DEFAULT

REMOVE VIEW

DO-DPDDQL-01A - 139 – Version 4.8

ADMIN4_DEFAULT
TRANS3_DEFAULT
TRANS4_DEFAULT

VMSALL VMSTM2_DEFAULT
VMSTM1_DEFAULT

SELECT

DO-DPDDQL-01A - 140 – Version 4.8

SELECT

The SELECT command reads element data of selected statistics of a metric and
displays the data on screen timely ordered.

Format

SELECT [STACKED] statistics_itemlist
[FROM] metrix_name

ALIAS alias_namelist [DATE] date_list
[ELEMENT] element_list

[WHERE] filter_list
[LIMIT] number;

Description

The SELECT command reads element data of selected statistics of a metric and
displays the data on screen timely ordered.

Depending if the STACKED argument is applied or not the SELECT query is
stacked or un-stacked.

The stacked form of the SELECT query stacks the element data of each statistics
fetched from the source collection databases before displaying them on screen.
Using the un-stacked form the data are not pre-processed.

As said before the stacked form of the SELECT statement stacks the element
data of each statistics selected. Thus, the stacked form of the query can be
used:

 If you are interested in the stacked values of a group of elements stored
in a single collection database (e.g. overall CPU load caused by a group
of processes on a single node)

 If you are interested in the stacked values of a particular element stored
in collection databases that refer different nodes (e.g. total I/O requests
from all cluster members on a cluster wide mounted disk)

 If you are interested in the stacked values of a group of elements stored
in collection databases that refer different nodes (e.g. overall I/O
requests from all cluster members on all cluster wide mounted disks,
cluster wide CPU load caused by a number of processes).

The un-stacked form of the statement applies to a single collection database
only (data collected for a single node).

Using the stacked form of the SELECT statement a statistics called iElementCnt is
automatically appended to the result table. It displays the number of elements
that match the filter criteria of the SELECT (see description of the ELEMENT and

SELECT

DO-DPDDQL-01A - 141 – Version 4.8

WHERE clause) statement and that are used to calculate the stacked value(s) of
the selected statistics.

If the clauses of the SELECT statement are defined in a way that only one
element of the metric specified is selected and the data source is a single
collection database (data collected for one node) the stacked and the un-
stacked form of the query returns the same result.

Prerequisite:
The data files of the collection database / logical storage areas defined by the
ALIAS and DATE clause have to be attached in advance using the ATTACH
command.

DQL$ evaluates the clauses of the SELECT statement in the following order:

1. FROM
2. ALIAS
3. DATE
4. ELEMENT
5. WHERE
6. LIMIT

There exist two modes to address the data fields (statistics) to fetch:

 Base address mode
In this case the statistics to fetch from the source database and the
metric the selected statistics are member of are defined separately. The
statistics_itemlist specifies the names of the statistics (field names) to
fetch from the metric defined by the FROM clause. Enter the statistics
as a comma separated list. In this case the FROM clause is mandatory.
E.g. the SELECT statement to fetch the data of the system wide CPU load
(field name: iCpuLoad) and kernel mode (field name: iKernel) from
metric SYSTEM of an OpenVMS collection database has the form:

DQL$> SELECT iCpuLoad, iKernel FROM SYSTEM ALIAS…;

 Direct address mode
In this case the statistics to fetch from the source database are entered
using the full data field address. Enter the full data field addresses of all
statistics to fetch (statistics_itemlist parameter) as a comma separated
list. The full data field address of a statistics consists of the metric the
statistics belongs to and its name (field name). The format is:

MetricName.StatisticsName

Since the metric the statistics belongs to is part of the full data field
address the FROM most not be defined. If you enter the FROM clause
the SELECT statement fails. The SELECT statement using the direct
address mode to fetch the same data from a source database as shown
in the example above has the form:

SELECT

DO-DPDDQL-01A - 142 – Version 4.8

DQL$> SELECT SYSTEM.iCpuLoad, SYSTEM.iKernel ALIAS…;

The direct address mode is restricted to select data (statistics) form a
single metric. If the statistics item list entered contains statistics that
refer different metrics (E.g. SYSTEM.iCpuload, PROCESS.iCpuload) the
command fails.

For both address modes it is a prerequisite that:
 All statistics specified must exist in the metric defined
 The metric (table) defined must exist in the collection databases /

logical storage areas defined by the ALIAS and DATE clause.

The ALIAS clause defines the source collection databases. If you are using the
un-stacked form of the SELECT statement only one collection database can be
entered. The stacked form of the statement can be applied to a group of nodes.
Enter the appropriate collection database aliases of the nodes of interest as a
comma separated list. It does not matter if the data samples stored in the
collection databases specified by the ALIAS clause were collected exactly at the
same time since the data are normalized before they are stacked, but the
sample interval the data were collected has to be equal. Otherwise the
command fails. Use the SHOW HEADER command to verify the sample intervals
of the collection databases defined by the ALIAS clause.

The database aliases can’t be user-defined. DQL$ assigns these aliases when it
starts up automatically. The collection database aliases available are displayed
when you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If you want to address specific logical storage areas (all data files that have been
created on the same day) of the collection databases defined by the ALIAS
clause the DATE clause is mandatory. Enter all the days of interest as a comma
separated list. Use OpenVMS date format to define the days of interest. If you
omit the DATE clause all attached data files (physical storage areas) that belong
to the database aliases defined by the ALIAS clause are accessed.

The optional ELEMENT clause can be used to filter the elements the SELECT
query applies to. Enter the element filter as a comma (,), or OR sign (|)
separated list. Elements that should be excluded from the SELECT query have to
be preceded with the ‘!=’ or ‘<>’ tag in the comma separated list of the
ELEMENT clause. VSI PERFDAT V3.0 and higher versions provide full wildcard
support. Asterisk (*) and percent sign (%) wildcard characters can be placed
anywhere within each string of the comma separated element list.If you enter
quotation marks at the beginning and the end of an element string the string is
taken literally (no wildcard operation performed on that string even if it

SELECT

DO-DPDDQL-01A - 143 – Version 4.8

contains wildcard characters).If you omit the ELEMENT clause all element data
of the statistics selected stored in the collection database / logical storage areas
defined by the ALIAS and DATE clause are read.

The optional WHERE clause can be applied to define additional filter criteria.
Enter the filter criteria as a comma separated list. A single filter criterion
consists of a valid statistics name of the metric defined by the FROM clause, an
operator and comparison values. Valid operators are

 < less than
 <= less than or equal
 = equal
 >= greater than or equal
 > greater than
 <> not equal
 != not equal

If the operator applied is <, <=, => or > a single comparison value can be entered
only. If the operator applied is =, != or <> you can enter a comparison value list.
Enter the comparison value list as an OR sign (|) separated list. If the data type
of the statistics defined by a single filter criterion is STRING, full wildcard
support is provided. Asterisk (*) and percent sign (%) wildcard characters can be
placed anywhere within the comparison strings. If you enter quotation marks at
the beginning and end of a comparison string the string is taken literally (no
wildcard operation performed on that string even if it contains wildcard
characters).

Examples:
If you want to limit the query to the time period 25-AUG-200301:00 to 25-AUG-
200304:00 enter (the TIME statistic exists for each metric):

WHERE TIME >= 25-AUG-200301:00, TIME <= 25-AUG-200304:00
If the PROCESS metric is defined by the FROM clause and you want to filter
forall processes of user SYSTEM before 25-AUG-200304:00 enter:

WHERE USERNAME = SYSTEM, TIME <= 25-AUG-200304:00
The PROCESS metric is defined by the FROM clause. If you want to filter for all
processes of all users that match either the wildcard filter criteria *SYS* (e.g.
SYSTEM, SYSTEST …) or *TCPIP* (e.g. TCPIP$FTP, TCPIP$SNMP, TCPIP$LPD …)
enter:

WHERE USERNAME = *SYS*| *TCPIP*, TIME <= 25-AUG-200304:00

With the optional LIMIT clause you can limit the output to a defined number of
rows.

Examples

Example 1

This examples demonstrates the use of the un-stacked from of the SELECT
query. In this example the CPU load (iCpuLoad) and kernel mode load (iKernel)

SELECT

DO-DPDDQL-01A - 144 – Version 4.8

caused by the process PERFDAT on node BCSXTC between 30-AUG-200502:00
and 30-AUG-200502:30 including the timestamps(‘Time’ statistics) are
displayed. Process data are stored in metric PROCESS.

DQL> SELECT Time, iCpuLoad, iKernel FROM PROCESS
cont> ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005
cont> ELEMENT PERFDAT
cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 30-AUG-200502:30;

or

DQL> SELECT PROCESS.Time, PROCESS.iCpuLoad, PROCESS.iKernel
cont> ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005
cont> ELEMENT PERFDAT
cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 30-AUG-200502:30;

Time iCpuLoad iKernel

30-AUG-2005 02:01:00 0.467 0.283
30-AUG-2005 02:03:00 1.183 0.875
30-AUG-2005 02:05:00 1.550 1.192
30-AUG-2005 02:07:00 0.658 0.442
30-AUG-2005 02:09:00 1.100 0.842
30-AUG-2005 02:11:00 1.267 1.000
30-AUG-2005 02:13:00 1.808 1.392
30-AUG-2005 02:15:00 1.400 1.108
30-AUG-2005 02:17:00 0.208 0.058
30-AUG-2005 02:19:00 0.275 0.142
30-AUG-2005 02:21:00 0.292 0.133
30-AUG-2005 02:23:00 0.308 0.133
30-AUG-2005 02:25:00 0.300 0.133
30-AUG-2005 02:27:00 0.258 0.117
30-AUG-2005 02:29:00 0.317 0.133

The ELEMENT clause is applied to filter for process PERFDAT and the WHERE
clause to filter for data of the time period 30-AUG-200502:00 to 30-AUG-
200502:30. In this case the SELECT query accesses the logical storage area of 30-
AUG-2005 of the collection database BCSXTC_DEFAULT.

Example 2

This examples demonstrates the use of the stacked from of the SELECT query. In
this example the stacked CPU load (iCpuLoad) and kernel mode load (iKernel)
caused by all PERFDAT process on node BCSXTC between 30-AUG-200502:00
and 30-AUG-200502:30 including the timestamps (‘Time’ statistics) are
displayed. Process data are stored in metric PROCESS. Although not defined the
result table of the select statement includes a statistics called iElemenCnt since
the stacked form of the SELECT statement is used. This statistics displays the
number of elements that match the filter criteria of the SELECT (ELEMENT and
WHERE clause) statement and that are used to calculate the stacked values.

DQL> SELECT STACKED Time, iCpuLoad, iKernel FROM PROCESS

SELECT

DO-DPDDQL-01A - 145 – Version 4.8

cont> ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005
cont> ELEMENT PERFDAT*
cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 30-AUG-200502:30;

or

DQL> SELECT STACKED PROCESS.Time, PROCESS.iCpuLoad, PROCESS.iKernel
cont> ALIAS BCSXTC_DEFAULT DATE 30-AUG-2005
cont> ELEMENT PERFDAT*
cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 30-AUG-200502:30;

Time iCpuLoad iKernel………iElementCnt
--
30-AUG-200502:00:00 15.217 4.117 5
30-AUG-2005 02:02:00 22.517 6.042 5
30-AUG-2005 02:04:00 25.909 7.079 5
30-AUG-2005 02:06:00 31.066 7.983 5
30-AUG-2005 02:08:00 37.604 9.229 5
30-AUG-2005 02:10:00 35.612 8.837 4
30-AUG-2005 02:12:00 27.812 7.567 4
30-AUG-2005 02:14:00 10.454 3.642 4
30-AUG-2005 02:16:00 0.829 0.608 4
30-AUG-2005 02:18:00 0.250 0.108 4
30-AUG-2005 02:20:00 0.283 0.137 4
30-AUG-2005 02:22:00 0.312 0.146 4
30-AUG-2005 02:24:00 0.317 0.146 4
30-AUG-200502:26:00 0.279 0.125 4
30-AUG-200502:28:00 0.308 0.133 4

The ELEMENT clause is applied to filter for processesPERFDAT* and the WHERE
clause to filter for data of the time period 30-AUG-200502:00 to 30-AUG-
200502:30. In this case the SELECT query accesses the logical storage area 30-
AUG-2005 of the collection database BCSXTC_DEFAULT only.

The element count varies since all processes that match the wildcard criteria
PERFDAT* (ELEMENT Clause) are selected. Since the auto-trend engine (process
name PERFDAT_REPORT) completed on 30-AUG-200502:08 the element count
is 5 the time before and 4 the time after.

Example 3

This is another example of the stacked from of the SELECT query. In this
example the stacked cluster wide CPU load (iCpuLoad) and kernel mode load
(iKernel) caused by the process PERFDAT between 30-AUG-200502:00 and 30-
AUG-200502:30 including the timestamps (‘Time’ statistics) are displayed. The
cluster is a two-node cluster using a quorum disk. The cluster members are
BCSXTC and HOBEL. Process data are stored in metric PROCESS. Although not
defined the result table of the select statement includes a statistics called
iElemenCnt since the stacked form of the SELECT statement is used. This
statistics displays the number of elements that match the filter criteria of the
SELECT (ELEMENT and WHERE clause) statement and that are used to calculate
the stacked values.

DQL> SELECT STACKED Time, iCpuLoad, iKernel FROM PROCESS

SELECT

DO-DPDDQL-01A - 146 – Version 4.8

cont> ALIAS BCSXTC_DEFAULT, HOBEL_DEFAULT DATE 30-AUG-2005
cont> ELEMENT PERFDAT
cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 30-AUG-200502:30;

Time iCpuLoad iKernel………iElementCnt
--
30-AUG-200502:00:00 0.658 0.4002
30-AUG-2005 02:02:00 1.142 0.8082
30-AUG-2005 02:04:00 1.846 1.3962
30-AUG-2005 02:06:00 1.575 1.1252
30-AUG-2005 02:08:00 1.246 0.8582
30-AUG-2005 02:10:00 1.729 1.3462
30-AUG-2005 02:12:00 1.958 1.5332
30-AUG-2005 02:14:00 1.658 1.2672
30-AUG-2005 02:16:00 0.854 0.5882
30-AUG-2005 02:18:00 0.308 0.1082
30-AUG-2005 02:20:00 0.342 0.1462
30-AUG-2005 02:22:00 0.337 0.1332
30-AUG-2005 02:24:00 0.350 0.1382
30-AUG-200502:26:00 0.338 0.1382
30-AUG-200502:28:00 0.346 0.1422

The ELEMENT clause is applied to filter for process PERFDAT and the WHERE
clause to filter for data of the time period 30-AUG-200502:00 to 30-AUG-
200502:30. Since we are interested in cluster wide stacked values the collection
databases of both cluster members are entered as a comma separated list in the
ALIAS clause (BCSXTC_DEFAULT, VNOABS_DEFAULT). The DATE clause is
present. Thus, the SELECT query accesses the logical storage areas 30-AUG-2005
of both collection databases (BCSXTC_DEFAULT, HOBEL_DEFAULT) only.

The element count is 2 for the whole period of time since PERFDAT was running
on both nodes (BCSXTC and VMSTM1).

You get the same result table if you define a cluster view that consists of the
member BCSXTC_DEFAULT and VNOABS_DEFAULT and you select the data from
the virtual collection database defined by the cluster view (form more
information about cluster views please refer to the DEFINE VIEW command
description).

DQL> DEFINE VIEW VIECLUALIAS BCSXTC_DEFAULT, VNOABS_DEFAULT;
DQL-I-VIEW, view /VIECLU/ defined

DQL> SELECT STACKED Time, iCpuLoad, iKernel FROM PROCESS
cont> ALIAS VIECLU_VIEW DATE 30-AUG-2005
cont> ELEMENT PERFDAT
cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 30-AUG-200502:30;

Example 4

In this example the stacked cluster wide CPU load (iCpuLoad) and kernel mode
load (iKernel) caused by all PERFDAT and DQL processes between 30-AUG-
200502:00 and 31-AUG-200502:00including the timestamps (‘Time’ statistics)

SELECT

DO-DPDDQL-01A - 147 – Version 4.8

are displayed. As in example 3 the cluster consists of node BCSXTC and HOBEL.
Process data are stored in metric PROCESS. Although not defined the result
table of the select statement includes a statistics called iElemenCnt since the
stacked form of the SELECT statement is used. This statistics displays the
number of elements that match the filter criteria of the SELECT (ELEMENT and
WHERE clause) statement and that are used to calculate the stacked values.

DQL> SELECT STACKED Time, iCpuLoad, iKernel FROM PROCESS
cont> ALIAS BCSXTC_DEFAULT, HOBEL_DEFAULT DATE 30-AUG-2005, 31-AUG-2005
cont> ELEMENT PERFDAT*, DQL*
cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 31-AUG-200502:00;

Time iCpuLoad iKernel………iElementCnt

30-AUG-200502:00:00 49.908 14.533 12
30-AUG-2005 02:02:00 87.092 30.529 12
30-AUG-2005 02:04:00 125.984 49.079 12
30-AUG-2005 02:06:00 123.025 44.017 12
30-AUG-2005 02:08:00 118.833 39.387 10
30-AUG-2005 02:10:00 109.679 39.167 8
30-AUG-2005 02:12:00 100.616 40.154 8
30-AUG-2005 02:14:00 51.334 22.750 8
30-AUG-2005 02:16:00 0.879 0.613 8
30-AUG-2005 02:18:00 0.317 0.117 8
.
.
.
31-AUG-2005 01:50:00 0.425 0.204 11
31-AUG-2005 01:52:00 0.379 0.150 11
31-AUG-2005 01:54:00 0.304 0.096 11
31-AUG-200501:56:00 0.342 0.137 11
31-AUG-200501:58:00 0.413 0.154 11

The ELEMENT clause is applied to filter for processes PERFDAT* and DQL* and
the WHERE clause to filter for data of the time period 30-AUG-200502:00 to 31-
AUG-200502:00. Since we are interested in cluster wide stacked values the
collection databases of both cluster members are entered as a comma
separated list in the ALIAS clause (BCSXTC_DEFAULT, VNOABS_DEFAULT). The
data of interest is stored in different logical storage areas of the collection
databases. Thus, the DATE clause contains the dates 30-AUG-2005 and 31-AUG-
2005.

You get the same result table if you define a cluster view that consists of the
member BCSXTC_DEFAULT and HOBEL_DEFAULT and you select the data from
the virtual collection database defined by the cluster view (form more
information about cluster views please refer to the DEFINE VIEW command
description).

DQL> DEFINE VIEW TESTCLU ALIAS BCSXTC_DEFAULT, HOBEL_DEFAULT;
DQL-I-VIEW, view /TESTCLU/ defined

DQL> SELECT STACKED Time, iCpuLoad, iKernel FROM PROCESS
cont> ALIAS TESTCLU_VIEW DATE 30-AUG-2005, 31-AUG-2005
cont> ELEMENT PERFDAT*, DQL*

SELECT

DO-DPDDQL-01A - 148 – Version 4.8

cont> WHERE TIME >= 30-AUG-200502:00, TIME <= 31-AUG-200502:00;

SET INFORMATIONAL

DO-DPDDQL-01A - 149 – Version 4.8

SET INFORMATIONAL

This command controls whether or not the DQL$ utility displays informational
messages at the terminal or if informational messages are printed in a batch job
log file.

Format

SET INFORMATIONAL; default

SET NOINFORMATIONAL;

Description

This command controls whether or not the DQL$ utility displays informational
messages at the terminal or if informational messages are printed in a batch job
log file.

SET REGION

DO-DPDDQL-01A - 150 – Version 4.8

SET REGION

This command is used to change the default regional setting for the current
DQL$ session and all subsequent DQL$ sessions started on any node that share
the same PERFDAT configuration database.

Format

SET REGION reg_name;

Description

This command is used to change the default regional setting for the current
DQL$ session and all subsequent DQL$ sessions started on any node that share
the same PERFDAT configuration database.

The reg_name parameter defines the name of the regional setting to be used as
the new default. Prerequisite is that the regional setting defined by this
parameter exists in the regional setting table of the PERFDAT configuration
database. Use the SHOW REGION command to display the regional settings
available. Enter the parameter with parenthesis if the name of the regional
setting is displayed case sensitive.

The default regional setting defines how the DQL$ utility formats numbers,
date, time and the list separator when exporting performance data to CSV files.

Note

Once the default regional setting has been changed for the current DQL$
session these settings will be used for any subsequent data exports, CSV
data import and load operation until the default is redefined using this
command. Even if you close the session and start a new DQL$ session the
default regional setting does not change. Thus, if you want to change the
format for data exports to CSV files or CSV data import or load operations
change the default regional settings in advance.

Example

In this example the default regional setting for the current DQL$ session shall be
changed to “German”. We apply the SHOW REGION command in advance to
check if the regional setting “German” exists. Since it is displayed case sensitive
it is entered with parenthesis.

DQL> SHOW REGION;

 Default region setting:

SET REGION

DO-DPDDQL-01A - 151 – Version 4.8

 Name: DEFAULT
 Decimal Symbol: .
 List Seperator: ,
 Date Format : dd-mmm-yyyy
 sMonths (ASCII): JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

 Available region settings:

Name: DEFAULT
 Decimal Symbol: .
 List Seperator: ,
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

 Name: German
 Decimal Symbol: ,
 List Seperator: ;
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAI,JUN,JUL,AUG,SEP,OKT,NOV,DEZ

DQL> SET REGION "German";
DQL-I-CFGSUCCESS, default region setting changed to /German/

DQL> SHOW REGION;

 Default region setting:

 Name: German
 Decimal Symbol: ,
 List Seperator: ;
 Date Format : dd-mmm-yyyy
 sMonths (ASCII): JAN,FEB,MAR,APR,MAI,JUN,JUL,AUG,SEP,OKT,NOV,DEZ

 Available region settings:

Name: DEFAULT
 Decimal Symbol: .
 List Seperator: ,
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

 Name: German
 Decimal Symbol: ,
 List Seperator: ;
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAI,JUN,JUL,AUG,SEP,OKT,NOV,DEZ

SET TRANSACTION ALIAS

DO-DPDDQL-01A - 152 – Version 4.8

SET TRANSACTION ALIAS

This command defines the access mode to a specific collection database or
logical storage area.

Format

SET TRANSACTION { READ ONLY | READ WRITE }
ON ALIAS alias_name [DATE date];

Description

This command defines the access mode to a specific collection database or
logical storage area. The access mode can be changed dynamically.

 READ ONLY read access only
 READ WRITE read/write (select/insert) access

The default value is READ ONLY.

The collection database/logical storage area is defined by the ALIAS and DATE
clause. The ALIAS clause defines the collection database alias, the DATE clause
the day of interest.

The database alias can’t be user-defined. DQL$ assigns the aliases when it starts
up automatically. The collection database aliases available are displayed when
you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If you omit the DATE clause the access mode is set for the whole collection
database defined by the ALIAS clause. If the DATE clause is present only the
logical storage area that is referred by the ALIAS and DATE clause is affected.

SET TRANSACTION ALIAS

DO-DPDDQL-01A - 153 – Version 4.8

Example

This example shows how to set read write access to a logical storage area. The
logical storage area 30-AUG-2005 of the collection database HOBEL_DEFAULT
contains a single physical storage area.

DQL> SET TRANSACTION READ WRITE ON
cont> ALIAS HOBEL_DEFAULT DATE 30-AUG-2005;
DQL-I-SET, file /HOBEL_DEFAULT_2005-08-30:00:03:00:1/ will be READ WRITE
accessible

SET TRANSACTION FILE

DO-DPDDQL-01A - 154 – Version 4.8

SET TRANSACTION FILE

This command defines the access mode to a specific physical storage area.

Format

SET TRANSACTION { READ ONLY | READ WRITE }
ON 'FILE filename_alias';

Description

This command defines the access mode to a specific physical storage area
specified by the 'filename_alias' parameter. The access mode can be changed
dynamically.

 READ ONLY read access only
 READ WRITE read/write (select/insert) access

The default value is READ ONLY.

Example

This example shows how to set read only access to a physical storage area.

DQL> SET TRANSACTION READ ONLY ON
cont> ‘FILE HOBEL_DEFAULT_2005-08-30:00:03:00:1’;
DQL-I-SET, file /HOBEL_DEFAULT_2005-08-30:00:03:00:1/ will be READ ONLY
accessible

SET VERIFY

DO-DPDDQL-01A - 155 – Version 4.8

SET VERIFY

This command controls whether command lines in a valid DQL$ script are
displayed at the terminal or are printed in a batch job log file.

Format

SET VERIFY;

SET NOVERIFY; default

Description

This command controls whether command lines in a valid DQL$ script are
displayed at the terminal or are printed in a batch job log file.

For information about DQL$ scripts please refer to the @ command description.

SHOW DATABASE

DO-DPDDQL-01A - 156 – Version 4.8

SHOWDATABASE

This command lists all collection databases accessible to the DQL$ session.

Format

SHOW DATABASE;

Description

This command lists all collection databases that can be accessed by the current
DQL$ session. Depending of the community definition (logical
PERFDAT$COMMUNTY) all or some databases of the whole distributed
performance database are accessible.

For more information about the distributed performance database and
database organization please see the chapters VSI PERFDAT distributed
performance database and VSI PERFDAT Query Interface (DQL)or the manual
VSI PERFDAT - Architecture and Technical Description.

Example

This example demonstrates the use of the SHOW DATABASE command on node
VNOABS. The node VNOABS and VMSTM1 are assigned to the logical
PERFDAT$COMMUNITY.

DQL> SHOW DATABASE;

Nodes Type Collection[Profile] File Name (Alias) Start Time Alias O
--
VNOABS D 2MIN VNOABS_2MIN N
 R WEEK VNOABS_WEEK N
VMSTM1 D 2MIN VNOABS_2MIN N
 R WEEK VNOABS_WEEK N
VNOCLU DV VIEW VNOCLU_VIEW N
REPORT RV VIEW REPORT_VIEW N

The SHOW DATABASE command provides the information which collection
databases can be accessed by (visible to) the DQL$ session due to the
community definition. In this case the collection databases that refer to the
nodes VNOABS and VMSTM1 are visible. In addition two cluster views –
VNOCLU and REPORT - are defined on VNOABS. Since all members of the cluster
views are accessible by the current DQL$ session these cluster views are listed
too (for more information about cluster views please refer to the chapter VSI
PERFDAT Query Interface (DQL)and the command description of the DEFINE
VIEW command).

SHOW DATABASE

DO-DPDDQL-01A - 157 – Version 4.8

The database view displays only the Nodes, (collection database) Type,
Collection [Profile] and (database) Alias columns. If the collection databases or
parts of it (logical or physical storage areas) are already attached, is shown in
the “O” (open) column.

Four different collection database types exist. The collection database type
defines the type of data stored in the collection database and the source that
created the data:

 D Raw Data - performance data collected by the OpenVMS data
collector or the SNMP extension

 R Report – data were created by the auto-trend engine by
applying the EXTRACT command.

 DV Cluster view – members of the cluster view are collection
databases created by the OpenVMS data collector or the SNMP
extension

 RV Report cluster view – members of the cluster view are report
collection database.

SHOW ELEMENT

DO-DPDDQL-01A - 158 – Version 4.8

SHOW ELEMENT

This command lists all elements (indices) of a particular metric (table).

Format

SHOW ELEMENT element_itemlist
FROM metrix_name

ALIAS alias_name [DATE] date
[ORDERED BY] statistics_name

[ASCENDING/DESCENDING]
[WHERE] filterlist

[INTO] file_name;

Description

The SHOW ELEMENT command lists all elements (indices) of a particular metric
(table).

The element_itemlist specifies the elements to be searched for in the metric
defined by the FROM clause. Enter the element item list as a comma (,), or OR
sign (|) separated list. Elements that should be excluded from the query have to
be preceded with the ‘!=’ or ‘<>’ tag in the comma separated list. VSI PERFDAT
V3.0 and higher versions provide full wildcard support. Asterisk (*) and percent
sign (%) wildcard characters can be placed anywhere within each string of the
comma separated element list. If you enter quotation marks at the beginning
and the end of an element item the string is taken literally (no wildcard
operation performed on that string even if it contains wildcard characters). If
you omit the element_itemlist parameter the SHOW ELEMENT lists all elements
available.

The FROM clause specifies the metric to search for elements.

Prerequisite:
The data files of the collection database / logical storage areas defined by the
ALIAS and DATE clause have to be attached in advance using the ATTACH
command.

The ALIAS clause defines the collection databases the SHOW ELEMENT
command applies to. You can define 1…n collection database aliases as a
comma separated list to search for elements of the metric defined by the FROM
clause.

The database aliases can’t be user-defined. DQL$ assigns these aliases when it
starts up automatically. The collection database aliases available are displayed
when you apply the SHOW DATABASE command. These aliases have the format:

SHOW ELEMENT

DO-DPDDQL-01A - 159 – Version 4.8

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If the SHOW ELEMENT query shall be applied to specific logical storage areas (all
data files that have been created on the same day) of the collection databases
defined by the ALIAS clause the DATE clause is mandatory. Enter all the days of
interest as a comma separated list. Use OpenVMS date format to define the
days of interest. If you omit the DATE clause all attached data files (physical
storage areas) that belong to the database aliases defined by the ALIAS clause
are accessed.

The optional ORDERED BY clause can be applied to sort the output. The statistics
(field) defined by the ORDERED BY clause is the sort criterion. The stacked
integral mean value of that statistics is calculated for each element and the
elements are displayed in ascending order of these values if the ASCENDING
keyword is applied or in descending order if the DESCENDING keyword is
applied.

In order to obtain more information about calculating stacked values please see
the CALCULATE (base form) command description.

The DESCENDING or ASCENDING keyword is mandatory if you use the ORDERED
BY keyword.

The optional WHERE clause can be applied to define additional filter criteria.
Enter the filter criteria as a comma separated list. A single filter criterion
consists of a valid statistics name of the metric defined by the FROM clause, an
operator and comparison values. Valid operators are

 < less than
 <= less than or equal
 = equal
 >= greater than or equal
 > greater than
 <> not equal
 != not equal

If the operator applied is <, <=, => or > a single comparison value can be entered
only. If the operator applied is =, != or <> you can enter a comparison value list.
Enter the comparison value list as an OR sign (|) separated list. If the data type
of the statistics defined by a single filter criterion is STRING, full wildcard
support is provided. Asterisk (*) and percent sign (%) wildcard characters can be
placed anywhere within the comparison strings. If you enter quotation marks at
the beginning and end of a comparison string the string is taken literally (no
wildcard operation performed on that string even if it contains wildcard
characters).

SHOW ELEMENT

DO-DPDDQL-01A - 160 – Version 4.8

Examples:
If you want to limit the query to the time period 25-AUG-200301:00 to 25-AUG-
200304:00 enter (the TIME statistic exists for each metric):

WHERE TIME >= 25-AUG-200301:00, TIME <= 25-AUG-200304:00
If the PROCESS metric is defined by the FROM clause and you want to filter for
all processes of user SYSTEM before 25-AUG-200304:00 enter:

WHERE USERNAME = SYSTEM, TIME <= 25-AUG-200304:00
The PROCESS metric is defined by the FROM clause. If you want to filter for all
processes of all users that match either the wildcard filter criteria *SYS* (e.g.
SYSTEM, SYSTEST …) or *TCPIP* (e.g. TCPIP$FTP, TCPIP$SNMP, TCPIP$LPD …)
enter:

WHERE USERNAME = *SYS*| *TCPIP*, TIME <= 25-AUG-200304:00

You can redirect the output of the query to a user definable CSV file if you apply
the optional INTO clause. If you omit the INTO clause the result of the query is
only displayed on screen.

Examples

Example 1

The collection database COS03_10SEC is attached. This collection database
consists of a single logical storage1-Dec-2003which in turn consists of two
physical storage areas created on 19:02:00 and 17:35:00.

To display all elements of the DEVICE metric stored in the whole collection
database enter:

DQL> SHOW ELEMENT FROM DEVICE ALIAS COS03_10SEC;

ELEMENT LIST of storage area DEVICE

Element refers to Ratio

1DGA101 0.0
1DGA201 0.0
DSA0 0.0
DSA1 0.0
DSA10 0.0
DSA11 0.0
DSA12 0.0
DSA13 0.0
DSA8 0.0
DSA9 0.0

 Elements: 10

Example 2

SHOW ELEMENT

DO-DPDDQL-01A - 161 – Version 4.8

In order to display the elements of the DEVICE metric ordered by their QIO load
between 1-DEC-2003 17:40 and1-DEC-2003 18:10. (The device QIO load is
stored in the field iQios) enter:

DQL> SHOW ELEMENT FROM ALIAS COS03_10SEC DEVICE
cont> ORDERED BY IQIOS DESCENDING
cont> WHERE TIME > 1-DEC-2003 17:40, TIME < 1-DEC-2003 18:10;

ELEMENT LIST of storage area DEVICE

Element refers to Ratio

DSA1 98.0
DSA0 1.2
DSA13 0.3
DSA12 0.2
DSA8 0.2
DSA10 0.0
DSA9 0.0
DSA11 0.0

 Elements: 8

You can see that only 8 of 10 elements meet the criterions specified with the
WHERE clause (no QIOs done on device 1DGA101 and1DGA201 between 1-
DEC-2003 17:40 and 1-DEC-2003 18:10).

During the specified time period (WHERE clause) 98% of all QIO's where done
on DSA1.

Example 3

The collection databases HOBEL_DEFAULT and BCSXTC_DEFAULT are attached.

In order to display all PERFDAT processes stored in the PROCESS metric in both
collection databases attached ordered by the CPU load (iCpuLoad statistics)
enter:

DQL> SHOW ELEMENT PERFDAT* FROM PROCESS
cont> ALIAS HOBEL_DEFAULT, BCSXTC_DEFAULT DATE 30-AUG-2005
cont> ORDERED BY iCpuLoad DESCENDING;

ELEMENT LIST

Element refers to Ratio

PERFDAT 54.3
PERFDAT_REPORT 43.5
PERFDAT_SNMP_0 2.1
PERFDAT_ARCHIVE 0.1
PERFDAT_SNMP 0.0

 Elements: 5

SHOW ELEMENT

DO-DPDDQL-01A - 162 – Version 4.8

Five processes are found in the logical storage areas of both collection
databases. The element listing does not indicate that each of the elements are
found in both logical storage areas, but that a particular element was found in
at least one of it.

Be careful interpreting the result table. It does not indicate that the process
PERFDAT was the top CPU consumer at all. The result table shows that on 30-
AUG-2005 the top CPU consumer of all PERFDAT* processes active on both
nodes (BCSXTC, HOBEL) was the process PERFDAT. It caused 54.3 % of the
overall (stacked) CPU load caused by all PERFDAT* processesactive on the nodes
HOBEL and BCSXTC.

SHOW FILE MAP

DO-DPDDQL-01A - 163 – Version 4.8

SHOW FILE MAP

This command displays the entries of the CSV file mapping database available
on the local node.

Format

SHOW FILE MAP [file_map_name];

Description

This command displays the entries of the CSV file mapping database available
on the local node.

If the file_map_name parameter is omitted brief information about the existing
entries stored in the CSV file mapping database are displayed. In order to get
detailed information about a particular file map entry you have to enter the file
map name.

For more information about CSV file mapping please see the MAP FILE
command.

Examples

Example 1

This example shows how to get brief information about existing mapping entries
stored in CSV mapping database.

DQL> SHO FILE MAP;

 CSV mapping: SPHINX

Example 2

This example shows how to full brief information about an existing mapping
entry (SPHINX) stored in CSV mapping database.

DQL> SHO FILE MAP SPHINX;

 CSV mapping: SPHINX
 Member of Profile: DEFAULT
 Metrix Name in use: SPHINX
 Metrix Descriptor file: PERFDAT$DB_ARCHIVE:SPHINX_DSC.CFG
 Mapped CSV files:
 1. Entry: PERFDAT$DB_ARCHIVE:*.CSV

SHOW HEADER

DO-DPDDQL-01A - 164 – Version 4.8

SHOW HEADER

This command reads the header of the attached physical storage areas and
displays basic information about the data collection that created the physical
storage area.

Format

SHOW HEADER;

Description

This command reads the header of the attached physical storage areas and
displays basic information about the data collection that created the physical
storage area. This includes start and stop time of the collection, the collection
profile the data collection was started with, the number of metrics and the
number of time the data collector was triggered to collect data.

Depending on the creator of the physical storage area (OpenVMS data collector,
SNMP extension, auto-trend engine, mapped CSV file) the output differs.

Example

Attach logical storage area:

DQL> ATTACH ALIAS HOBEL_DEFAULT DATE 30-AUG-2005;

Show header of the attached logical storage area:

DQL> SHOW HEADER;

 HEADER of storage area HOBEL_DEFAULT_2005-08-30:00:03:00:1

 OpenVMS Header field definitions

 Description Type
 ----------- ----

 Version of PerfDat that created this file V3.0

 Node Name HOBEL
OpenVMS Node originally created this storage area HOBEL
 Node Type Server
 Operating system OpenVMS
 OS version of the node V7.3-1
 Profile Name DEFAULT
 Start Time 30-AUG-200500:03:00
 Stop Time 31-AUG-200500:01:00
 Actual Sample Inter. [s] 120

SHOW HEADER

DO-DPDDQL-01A - 165 – Version 4.8

 Original set Sample Inter. [s] 120
 System metric enabled TRUE
 Cpu metric enabled TRUE
 Process metric enabled TRUE
 Selected Processes ALL
 User metric enabled TRUE
 Selected User ALL
 Image metric enabled TRUE
 Selected Images ALL
 Account metric enabled TRUE
 Selected Account Names All
 XFC Volume metric enabled TRUE
 XFC IO Size metric on Volume enabled FALSE
 XFC File metric enabled FALSE
 XFC IO Size metric on File enabled TRUE
 XFC Selected Volumes ALL
 Device metric enabled TRUE
 Selected Devices *$D*, *DSA*
 IO Size Metric on selected Devices enabled FALSE
 File Metric on selected Devices enabled FALSE
Process Metric on selected Devices enabled FALSE
 Selected Processes/Devices ALL
 File Metric/Process on selected Devices enabled FALSE
 Device Capacity & Path Info metric enabled TRUE
 LAN Adapter metric enabled TRUE
 LAN Device/Adapter metric enabled TRUE
LAN Protocol metric enabled TRUE
 SCS metric enabled FALSE
 Collection Creation Time 30-AUG-2005 00:01:00
 Collection Flush Time 31-AUG-200500:00:00
 # of Samples 719
 # of Metrics 14

SHOW LOGICAL STORAGE AREA

DO-DPDDQL-01A - 166 – Version 4.8

SHOW LOGICAL STORAGE AREA

This command displays the logical storage area view of the collection databases
accessible to the DQL$ session.

Format

SHOW LOGICAL STORAGE AREA [ALIAS alias_name];

Description

This command displays the logical storage area view of the collection databases
accessible to the DQL$ session. The ALIAS clause is optional. It defines the
collection database alias the SHOW command applies to.

The database alias can’t be user-defined. DQL$ assigns the aliases when it starts
up automatically. The collection database aliases available are displayed when
you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If the ALIAS clause is omitted, the logical storage areas of all collection
databases accessible (visible) to DQL$ session are displayed.

For more information about the distributed collection database and database
organization please see the chapters VSI PERFDAT distributed performance
database and VSI PERFDAT Query Interface (DQL)or the manual VSI PERFDAT -
Architecture and Technical Description.

Example

Example 1

DQL> SHOW LOGICAL STORAGE AREA;

Nodes Type Collection[Profile] File Name (Alias) Start Time Alias O
--
VNOABS D 10S 24-SEP-2003 14:29:00 VNOABS_10S N
 20S 24-SEP-2003 14:29:00 VNOABS_20S N
 2MIN 19-SEP-2003 00:03:00 VNOABS_2MIN Y
 24-SEP-2003 00:03:00 VNOABS_2MIN Y
 25-SEP-2003 00:03:00 VNOABS_2MIN Y

The logical storage area is defined to be the sum of all physical storage areas
created on the same day. Thus, the logical storage area view displays these days

SHOW LOGICAL STORAGE AREA

DO-DPDDQL-01A - 167 – Version 4.8

performance data are collected and stored in the appropriate collection
databases that are accessible (visible) to the DQL$ session. The column 'Start
Time' displays the time of the first data sample stored in each of the logical
storage areas.

Example 2

DQL> SHOW LOGICAL STORAGE AREA ALIAS VNOABS_2MIN;

Nodes Type Collection[Profile] File Name (Alias) Start Time Alias O
--
VNOABS D 2MIN 19-SEP-2003 00:03:00 VNOABS_2MIN Y
 24-SEP-2003 00:03:00 VNOABS_2MIN Y
 25-SEP-2003 00:03:00 VNOABS_2MIN Y

In this example only the logical storage areas of collection
databaseVNOABS_2MIN are displayed since the ALIAS clause is present.

SHOW METRIX

DO-DPDDQL-01A - 168 – Version 4.8

SHOW METRIX

This command displays all the metrics (tables) stored in attached physical
storage areas and the number of elements that exists within each metric.

Format

SHOW METRIX [ALIAS] alias_name [DATE] date;

Description

The SHOW METRIX command displays all the metrics (tables) stored in attached
physical storage areas and the number of elements that exists within each
metric.

The ALIAS and DATE clause are optional. They define the collection database
alias and the day of interest (logical storage area) the SHOW command applies
to.

The database alias can’t be user-defined. DQL$ assigns the aliases when it starts
up automatically. The collection database aliases available are displayed when
you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If the DATE clause is omitted the command applies to all physical storage areas
of the collection database defined by the ALIAS clause. If the ALIAS clause is
omitted too, the command applies to all attached physical storage areas.

Examples

The collection database VNOABS_2MIN has been attached. It consists of the
logical storage area 18-Sep-2003 and 19-Sep-2003. The logical storage area 18-
Sep-2003 consists of one physical storage area (VNOABS_2MIN_2003-SEP-
18:20:43:00) and the logical storage area 19-Sep-2003 consists of 2 physical
storage areas (VNOABS_2MIN_2003-SEP-19:00:03:00, VNOABS_2MIN_2003-
SEP-19:15:03:00).

Example 1

In this example the metrics stored in all physical storage areas previously
attached are displayed since no collection database / logical storage area filter
have been defined.

SHOW METRIX

DO-DPDDQL-01A - 169 – Version 4.8

DQL> SHOW METRIX;

METRIX DEFINITION of storage area VNOABS_2MIN_2003-SEP-18:20:43:00

 Metrics enabled Element Count
 --
 CPU 4
 DEVICE 2
 IMAGE 35
 PROCESS 38
 SCSPORT 1
 SCSPORT.VC 1
 SCSPORT.VC.CHANNEL 3
 SYSTEM 1
 USER 8
 XFCVOLUME 2

METRIX DEFINITION of storage area VNOABS_2MIN_2003-SEP-19:00:03:00

 Metrics enabled Element Count
 --
 CPU 4
 DEVICE 2
 IMAGE 45
 PROCESS 42
 SCSPORT 1
 SCSPORT.VC 1
 SCSPORT.VC.CHANNEL 3
 SYSTEM 1
 USER 8
 XFCVOLUME 2

METRIX DEFINITION of storage area VNOABS_2MIN_2003-SEP-19:15:03:00

 Metrics enabled Element Count
 --
 CPU 4
 DEVICE 2
 IMAGE 45
 PROCESS 42
 SCSPORT 1
 SCSPORT.VC 1
 SCSPORT.VC.CHANNEL 3
 SYSTEM 1
 USER 8
 XFCVOLUME 2

Example 2

In this example the metrics stored in the physical storage areas that have been
created on 18-SEP-2003 are displayed only, since the command is entered with
the appropriate logical storage area filter (ALIAS and DATE clause are present).

SHOW METRIX

DO-DPDDQL-01A - 170 – Version 4.8

DQL> SHOW METRIX ALIAS VNOABS_2MIN DATE 18-SEP-2003;

METRIX DEFINITION of storage area VNOABS_2MIN_2003-SEP-18:20:43:00

 Metrics enabled Element Count
 --
 CPU 4
 DEVICE 2
 IMAGE 35
 PROCESS 38
 SCSPORT 1
 SCSPORT.VC 1
 SCSPORT.VC.CHANNEL 3
 SYSTEM 1
 USER 8
 XFCVOLUME 2

SHOW PHYSICAL STORAGE AREA

DO-DPDDQL-01A - 171 – Version 4.8

SHOW PHYSICAL STORAGE AREA

This command displays the physical storage area view of the collection
databases accessible to the DQL$ session.

Format

SHOW PHYSICAL STORAGE AREA [ALIAS alias_name];

Description

This command displays the physical storage area view of the collection
databases accessible to the DQL$ session. The ALIAS clause is optional. It defines
the collection database alias the SHOW command applies to.

The database alias can’t be user-defined. DQL$ assigns the aliases when it starts
up automatically. The collection database aliases available are displayed when
you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If the ALIAS clause is omitted, the physical storage areas of all collection
databases accessible (visible) to DQL$ session are displayed.

For more information about the distributed performance database and
database organization please see the chapters VSI PERFDAT distributed
performance database and VSI PERFDAT Query Interface (DQL)or the manual
VSI PERFDAT - Architecture and Technical Description.

Examples

Example 1

DQL> SHOW PHYSICAL STORAGE AREA;

Nodes Type Collection[Profile] File Name (Alias) Start Time Alias O
--
VNOABS D 10S VNOABS_10S_2003-SEP-24:14:29:00:1 24-SEP-200314:29:00 VNOABS_10S N
 20S VNOABS_20S_2003-SEP-24:14:29:00:1 24-SEP-2003 14:29:00 VNOABS_20S N
 VNOABS_2MIN_2003-SEP-19:00:03:00:1 19-SEP-2003 00:03:00 VNOABS_2MIN Y
 2MIN VNOABS_2MIN_2003-SEP-19:15:03:00:1 19-SEP-2003 15:03:00 VNOABS_2MIN Y
 VNOABS_2MIN_2003-SEP-24:00:03:00:1 24-SEP-2003 00:03:00 VNOABS_2MIN Y
 VNOABS_2MIN_2003-SEP-25:00:03:00:1 25-SEP-2003 00:03:00 VNOABS_2MIN Y
BCSXTC D 10S BCSXTC_10S_2003-SEP-24:14:29:00:1 24-SEP-200300:02:00 BCSXTC_10S N

SHOW PHYSICAL STORAGE AREA

DO-DPDDQL-01A - 172 – Version 4.8

In this example the collection databases of node VNOABS and BCSXTC are visible
to DQL$ session due to the community definition. The first column displays all
community members (VNOABS, BCSXTC). The second column displays all
available collection databases that refer to the node listed in the column before.
The third column displays the physical storage areas and their filename aliases
(physical storage area aliases) automatically created by DQL$. The fourth
column displays the time the first data sample was stored in each of the physical
storage areas. The fifth column display the collection database alias the physical
storage area belongs to. The last column shows if a specific physical storage
area is already attached.

When you look at the output you can see that the logical storage area of 19-
Sep-2003 and 20-Sep-2003 consists of 2 physical storage areas. All other logical
storage areas consist of a single physical storage area.

Example 2

DQL> SHOW PHYSICAL STORAGE AREA ALIAS VNOABS_2MIN;

Nodes Type Collection[Profile] File Name (Alias) Start Time Alias O
--
VNOABS D 2MIN VNOABS_2MIN_2003-SEP-19:15:03:00:1 19-SEP-2003 15:03:00 VNOABS_2MIN Y
 VNOABS_2MIN_2003-SEP-24:00:03:00:1 24-SEP-2003 00:03:00 VNOABS_2MIN Y
 VNOABS_2MIN_2003-SEP-25:00:03:00:1 25-SEP-2003 00:03:00 VNOABS_2MIN Y

In this example only the physical storage areas of collection
databaseVNOABS_2MIN are displayed since the ALIAS clause is present.

SHOW PROCEDURE

DO-DPDDQL-01A - 173 – Version 4.8

SHOW PROCEDURE

The SHOW PROCEDURE command displays the user-defined statistics stored in
the stored procedure table of the PERFDAT configuration database.

Format

SHOW PROCEDURE user_defined_statistics

[METRIX metric_name]
[OSTYPE OS_name]

[NODE node_name];

Description

The SHOW PROCEDURE command displays the user-defined statistics stored in
the stored procedure table of the PERFDAT configuration database.

The user_defined_statistics parameter defines the user-defined statistics to
display. Full wildcard support is provided. Asterisk (*) and percent sign (%)
wildcard characters can be placed anywhere within the user_defined_statistics
string.

The clauses METRIX and OSTYPE are optional. The metric_name parameter
defines the metric the statistics defined by the user_defined_statistics
parameter is member of. The OS_name parameter defines the operating system
the metric defined by the metric_name parameter is valid for.

If you omit the optional clause NODE all statistics of the generic as well as of the
node specific section that matches the filter criteria defined by the
user_defined_statistics parameter and the METRIX and OSTYPE clause are
displayed. If you apply the NODE clause only the user-defined statistics of the
node specific section of the PERFDAT configuration database that match the all
filter criteria are displayed.

For more information about generic and node specific user-defined statistics
please refer to the DEFINE PROCEDURE command description.

SHOW PROCEDURE

DO-DPDDQL-01A - 174 – Version 4.8

Examples

Example 1:

In this example all user-defined statistics $iCpu* will be displayed. Since no
METRIX and OSTYPE filter is provided all user-defined statistics defined for
different metrics and operating systems that matches the wildcard string are
displayed.

DQL> SHOW PROCEDURE $iCpu*;

Generic Stored Procedures valid for all nodes of OS Type: OPENVMS

Metrix: PROCESS $iCpuNorm = iCpuLoad/iCPUs

Dscr: CPU load normalized, Unit: [%]
Metrix: SYSTEM $iCpuNorm = iCpuLoad / iCpuCnt

Dscr: CPU load normalized, Unit: [%]
$iKernExec = iKernel+iExec
Dscr: Kernel + Exec Mode, Unit: [%]

Generic Stored Procedures valid for all nodes of OS Type: SUNOS

Metrix: SUN_SYSTEM $iCpuNorm = iCpuLoad / iCpuCnt

Dscr: CPU load normalized, Unit: [%]

Node specific stored Procedures valid for OS Type: OPENVMS

Metrix: PROCESS
 Node: VMSTM1 $iCpuNorm= iCpuLoad / iCpus * 2
 Dscr: CPU exec mode normalized [0..200%], Unit: [%]

Example 2:

In this example the METRIX and OSTYPE clause are defined to filter for all
$iCpu* user-defined statistics that are member of the OpenVMS metric SYSTEM.

DQL> SHOW PROCEDURE $iCpu* METRIX SYSTEM OSTYPE OpenVMS;

Stored Procedures for: OPENVMS
Metrix: SYSTEM $iCpuNorm = iCpuLoad / iCpuCnt

Dscr: CPU load normalized, Unit: [%]

SHOW REGION

DO-DPDDQL-01A - 175 – Version 4.8

SHOW REGION

The SHOW REGION command displays the default regional setting of the current
DQL$ session and all regional settings defined in the regional setting table of the
PERFDAT configuration database.

Format

SHOW REGION;

Description

The SHOW REGION command displays the default regional setting of the current
DQL$ session and all regional settings defined in the regional setting table of the
PERFDAT configuration database.

For more information about user-defined statistics please refer to the
description of the DEFINE REGION and SET REGION command.

Example

DQL> SHOW REGION;

 Default region setting:

 Name: DEFAULT
 Decimal Symbol: .
 List Seperator: ,
 Date Format : dd-mmm-yyyy
 sMonths (ASCII): JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

 Available region settings:

Name: DEFAULT
 Decimal Symbol: .
 List Seperator: ,
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

 Name: German
 Decimal Symbol: ,
 List Seperator: ;
 Date Format : dd-mmm-yyyy
 Months (ASCII): JAN,FEB,MAR,APR,MAI,JUN,JUL,AUG,SEP,OKT,NOV,DEZ

SHOW STATISTICS

DO-DPDDQL-01A - 176 – Version 4.8

SHOW STATISTICS

The SHOW STATISTICS command displays the fields defined in a particular
metric (table) of attached physical storage areas. The field name, datatype, field
length and the field description is displayed.

Format

SHOW STATISTICS FROM metric_name [ALIAS] alias_name [DATE] date;

Description

The SHOW STATISTICS command displays the fields defined in a particular
metric (table) of attached physical storage areas. The field name, datatype, field
length and the field description is displayed.

The ALIAS and DATE clause are optional. They define the collection database
alias and the day of interest (logical storage area) the SHOW command applies
to.

The database alias can’t be user-defined. DQL$ assigns the aliases when it starts
up automatically. The collection database aliases available are displayed when
you apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by performance data collections
started with the collection profile 2MIN on node BCSXTC is BCSXTC_2MIN.

If the DATE clause is omitted the command applies to all physical storage areas
of the collection database defined by the ALIAS clause. If the ALIAS clause is
omitted too, the command applies to all attached physical storage areas.

Example

The collection database COS03_10SEC has been attached. On 1-Dec-2003 the
logical storage area consists of two physical storage area created on 19:02:00
and 17:35:00.

To display the field definitions of the metric (table) PROCESS stored in that
physical storage areas enter:

DQL>SHOW STATISTICS FROM PROCESS ALIAS COS03_10SEC DATE 1-DEC-2003;

PROCESS METRIC DEFINITION of storage area COS03_10SEC_2003-12-01:17:35:00

SHOW STATISTICS

DO-DPDDQL-01A - 177 – Version 4.8

Field definitions of Metric: PROCESS

FieldName Type Description
------------- ------- --------------

PrcName STRING(32) [P] ProcessName
Time DATETIME(8) Time
UserName STRING(16) [I] User Name Reference
ImageName STRING(256) [I] Image Name Reference
iDIO FLOAT(4) Direct IO rate
iBIO FLOAT(4) Buffered IO rate
iGlbMem FLOAT(4) Gbl Memory allocated by image
iPrcMem FLOAT(4) Private Memory allocated by image
iPfl FLOAT(4) PFL total
iPflFOR FLOAT(4) PFL on read faults
iPflFOW FLOAT(4) PFL on write faults
iPflFOE FLOAT(4) PFL on executive fault
iPageIO FLOAT(4) IO PageIOs
iCpuLoad FLOAT(4) CPU Load total
iKernel FLOAT(4) CPU Mode kernel
iExec FLOAT(4) CPU Mode exec
iSuper FLOAT(4) CPU Mode super
iUser FLOAT(4) CPU Mode user
iIOthres FLOAT(4) IO request threshold
iMemthres FLOAT(4) Memory usage threshold
iCputhres FLOAT(4) CPU load threshold

Element count 47

PROCESS METRIC DEFINITION of storage area COS03_10SEC_2003-12-01:19:02:00

Field definitions of Metric: PROCESS

FieldName Type Description
------------- ------- --------------

PrcName STRING(32) [P] ProcessName
Time DATETIME(8) Time
UserName STRING(16) [I] User Name Reference
ImageName STRING(256) [I] Image Name Reference
iDIO FLOAT(4) Direct IO rate
iBIO FLOAT(4) Buffered IO rate
iGlbMem FLOAT(4) Gbl Memory allocated by image
iPrcMem FLOAT(4) Private Memory allocated by image
iPfl FLOAT(4) PFL total
iPflFOR FLOAT(4) PFL on read faults
iPflFOW FLOAT(4) PFL on write faults
iPflFOE FLOAT(4) PFL on executive fault
iPageIO FLOAT(4) IO PageIOs
iCpuLoad FLOAT(4) CPU Load total
iKernel FLOAT(4) CPU Mode kernel
iExec FLOAT(4) CPU Mode exec
iSuper FLOAT(4) CPU Mode super

SHOW STATISTICS

DO-DPDDQL-01A - 178 – Version 4.8

iUser FLOAT(4) CPU Mode user
iIOthres FLOAT(4) IO request threshold
iMemthres FLOAT(4) Memory usage threshold
iCputhres FLOAT(4) CPU load threshold

Element count 53

All fields marked with [P] are members of the element key (index).All fields
marked with [I] are informational fields. These fields arenot visible to the GUI.

SHOW VERSION

DO-DPDDQL-01A - 179 – Version 4.8

SHOW VERSION

The SHOW VSERION command displays the version of the DQL$ utility and
DQL$SRV of the node the current DQL$ session is connected to.

Format

SHOW VERSION;

Description

The SHOW VERSION command displays the version of the DQL$ utility and
DQL$SRV of the node the current DQL$ session is connected to.

Example

DQL> SHOW VERSION;

DQL$ utility: V4.2
DQL$SRV on node VMSTM1: V4.2
DQL$SRV on node VMSTM2: V4.2

SHOW VIEW

DO-DPDDQL-01A - 180 – Version 4.8

SHOW VIEW

The SHOW VIEW command displays the cluster views configured on the local
node (content of the local cluster view database).

Format

SHOW VIEW view_name;

Description

The SHOW VIEW command displays the cluster views configured on the local
node (content of the local cluster view database).

For more information about cluster views please refer to the description of the
DEFINE VIEW command.

Example

DQL> SHOW VIEW;

View referenced Aliases
--

 RLP ADMIN3_DEFAULT
ADMIN4_DEFAULT
TRANS3_DEFAULT
TRANS4_DEFAULT

VIECLU BCSXTC_DEFAULT
 VMSTM1_DEFAULT

VMSTM2_DEFAULT
VMSALL VMSTM2_DEFAULT

VMSTM1_DEFAULT

UPDATE HEADER

DO-DPDDQL-01A - 181 – Version 4.8

UPDATE HEADER

The UPDATE HEADER command can be applied to modify any header attributes
of a logical storage area or a whole collection database.

Format

UPDATE HEADER ALIAS alias_name [DATE date]
 ATTRIBUTE attr_name= attr_value;

Description

This command modifies header attributes of a logical storage area or a whole
database.

The ALIAS clause specifies the alias of the collection database. That database
alias cannot be user-defined. DQL$ assigns database aliases automatically when
it starts up. The collection database aliases available are displayed when you
apply the SHOW DATABASE command. These aliases have the format:

NodeName_CollectionProfile

E.g. the database alias of the database created by OpenVMS performance data
collections started with the collection profile 2MIN on node BCSXTC is
BCSXTC_2MIN.

If you want to modify the header attributes of a logical storage area (all data
files that have been created on the same day) of a collection database, the DATE
clause is mandatory. Use OpenVMS date format to define the particular day of
interest. If you omit the DATE clause the header attribute defined by the
ATTRIBUTE clause of all data files (physical storage areas) of the collection
database defined by the ALIAS clause are modified.

The ATTRIBUTE clause is mandatory. The attr_value parameter in the
ATTRIBUTE clause defines the new value to be assigned to the header attribute
defined by the attr_name parameter.

The header attribute names of a collection database can be displayed with the
SHOW HEADER command after a collection database has been attached with
the ATTACH command.

