

VSI OpenVMS

PERFDAT V4.8

Application Programming Interface

Users Guide

February 2019

Revision/Update Information New manual.
Software Version VSI PERFDAT V4.8
Operating System Version OpenVMS Alpha V7.3-2 & higher

 OpenVMS I64 V8.2 & higher

DO-DPDAUG-01A - 2 – Version 4.8

February 2019

Copyright © 2019 VMS Software, Inc., (VSI), Bolton Massachusetts, USA.

VMS Software Inc. makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
VMS Software Inc. shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

This document contains proprietary information, which is protected by copyright. No part of this
document may be photocopied, reproduced, or translated into another language without the prior
written consent of VMS Software Inc. The information contained in this document is subject to
change without notice

HPE, the HPE logo, and OpenVMS are trademarks of Hewlett-Packard Enterprise.

Microsoft, MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation in
the U.S. and/or other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from VSI required for possession, use or copying.

VMS Software Inc. shall not be liable for technical or editorial errors or omissions contained
herein. The information is provided “as is” without warranty of any kind and is subject to change
without notice. The warranties for VMS Software Inc. products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

DO-DPDAUG-01A - 3 – Version 4.8

Contents

Preface ... 5
Introduction ... 6

1.1 General Description ... 7
1.2 Features ... 7
1.3 Using the C Programming API ... 8
1.4 Application collection database .. 12
1.5 Configuration requirements .. 15

1.5.1 Collection database descriptor .. 15
1.6 Managing application data collections .. 19

1.6.1 Application collection profiles ... 19
1.6.2 Application report profiles .. 20
1.6.3 Application auto-start entries ... 21
1.6.4 Start/Stop of an application collection ... 21
1.6.5 Enable/Disable online alerting .. 24
1.6.6 Displaying the application data collection status .. 24

1.7 Floating point format .. 25
1.8 User privileges ... 26

API Routine Reference Section .. 27
2.1 PerfDatAPIAssocDisableAlert .. 28
2.2 PerfDatAPIAssocEnableAlert ... 29
2.3 PerfDatAPIAssocInsertRecord ... 31
2.4 PerfDatAPIAssocIsAlertEnabled .. 34
2.5 PerfDatAPIAssocIsCollStarted ... 36
2.6 PerfDatAPIAssocIsInit .. 38
2.7 PerfDatAPIAssocRelAssoc .. 39
2.8 PerfDatAPIAssocStartColl .. 40
2.9 PerfDatAPIAssocStopColl .. 42
2.10 PerfDatAPIDisableAlert ... 44
2.11 PerfDatAPIEnableAlert .. 45
2.12 PerfDatAPIInit .. 47
2.13 PerfDatAPIInsertRecord .. 53
2.14 PerfDatAPIIsAlertEnabled .. 56
2.15 PerfDatAPIIsCollStarted ... 58
2.16 PerfDatAPIIsInit ... 60
2.17 PerfDatAPIRelAssoc ... 61
2.18 PerfDatAPIStartColl ... 62
2.19 PerfDatAPIStopColl .. 64

Program Examples ... 65
3.1 PERFDAT_API_TEST_EF.C .. 65
3.2 PERFDAT_API_TEST_AST.C .. 67
3.3 Build instructions ... 67
3.4 Configuration instructions ... 68
3.5 Running the Example Programs .. 68

DO-DPDAUG-01A - 4 – Version 4.8

DO-DPDAUG-01A - 5 – Version 4.8

Preface

This manual provides detailed usage and reference information on the VSI
PERFDAT application programming interface.

Audience

This manual is intended for system and application programmers who require a
basic understanding of how to use VSI PERFDAT API routines to insert data into
the distributed VSI PERFDAT collection database.

The reader should be familiar with

 VSI PERFDAT– Architecture and Technical Description
 VSI PERFDAT– PERFDAT_MGR Reference Manual

Document Structure

 Chapter 1 Introduction, Architecture and Technical description
 Chapter 2 VSI PERFDAT C API reference section
 Chapter 3 Program examples

Conventions Used in this Manual

Special in examples indicates text that the system displays or

user typed input.
UPCASE in a command represents text that you have to enter as shown.
Lowercase indicates variable information that a user supplies.
Italics
[] in a command definition, enclose parts of the command that a

user can omit.
Key indicates a named key on the keyboard; for example, RETURN
CTRL/x is the symbol used to represent the pressing of a control key. It

indicates that the user holds down the key marked Ctrl and
simultaneously pressing the appropriate key.

DO-DPDAUG-01A - 6 – Version 4.8

1

Introduction

The aim of this section is to provide information about:

 VSI PERFDAT API features
 basic architecture
 using the VSI PERFDAT API
 configuration requirements
 managing application data collections
 floating point format considerations
 required user privileges

For a detailed description of all the API routines available, please refer to the VSI
PERFDAT API reference section in this manual.

Introduction

DO-DPDAUG-01A - 7 – Version 4.8

1.1 General Description

VSI PERFDAT provides an easy to use C programming interface (API) to insert
any type of performance data collected by the components (programs) of an
application directly into the distributed VSI PERFDAT performance database.

The VSI PERFDAT installation procedure provides two object libraries that
contain the API routines:

 PERFDAT$LIBRARY:PERFDAT_API_AXP.OLB
Alpha object library

 PERFDAT$LIBRARY:PERFDAT_API_IA64.OLB
I64 object library

1.2 Features

The use of the VSI PERFDAT API provides several advantages:

 The programmer does not have to worry about when to open or close a
data file. Data files are automatically created, opened and closed as
defined by the VSI PERFDAT design rules.

 The VSI PERFDAT environment handles data files created by an
application using the API as if these data files had been created by any
of the VSI PERFDAT data collectors (OpenVMS, SNMP extension, EVA
extension).

o Application data files are automatically managed by the VSI
PERFDAT archive and housekeeping processes reliably and
unattended (for more information about VSI PERFDAT archiving
and housekeeping please refer to the manual VSI PERFDAT-
Architecture and Technical Description)

o Trend, capacity and baseline report profiles can be defined for
application data collections. These reports are automatically
processed by the VSI PERFDAT auto trend engine (for more
information about the VSI PERFDAT auto trend engine please
refer to the manual VSI PERFDAT- Architecture and Technical
Description).

 The API does not create separate data files for each process of an
application but inserts the data provided by all processes of an
application running on the same node into the same data file. This
feature reduces the number of data files.

 Application data collections can be managed with the VSI PERFDAT
management utility PERFDAT_MGR in the same way using the same
commands as if one was managing OpenVMS, SNMP or EVA data
collections without any programming effort, code change or the need of
restarting the application.

o Application data collections can be stopped at any time.

Introduction

DO-DPDAUG-01A - 8 – Version 4.8

o Application data collections are profile controlled as with other
data collections created by one of the VSI PERFDAT data
collectors (OpenVMS data collector, SNMP extension, EVA
extension). Application data collection profiles can be user
defined. A collection profile defines the sample interval and the
metrics that will be enabled when a data collection is started
using a particular collection profile.

o Once an application data collection has been stopped it can be
started again with a different collection profile.

o Online alerting can be enabled or disabled during run-time.
o The status of application data collections can be monitored.

 Time concurrency
Performance data is typically provided as averaged values like MB/sec
or Transactions/sec. If an application consists of several processes which
provide performance data as averaged values, it is important in terms of
performance analysis that all these processes gather, calculate and
provide the data at the same time so that this data can be compared
and correlated to each other without any pre-processing. The VSI
PERFDAT API triggers all processes of an application at the same time to
collect, to calculate and to insert the data records into the metrics of
the collection database regardless on which node the processes are
running on within an OpenVMS cluster. Thus, the program developer
does not have to care about such timing issues as described herein.

1.3 Using the C Programming API

The aim of this section is to provide architectural and technical background
information about the VSI PERFDAT API and to explain the basic steps of how to
use the VSI PERFDAT API routines. For a detailed description of all API routines
available, please refer to the VSI PERFDAT API reference section in this manual.

Basically only two API calls are required to insert data into the distributed VSI
PERFDAT performance database.

Introduction

DO-DPDAUG-01A - 9 – Version 4.8

1. PerfDatAPIInit()

This routine initializes the VSI PERFDAT API and requests the VSI
PERFDAT DQL interface to associate a collection database with the
calling program. The handle of this association is the application
database association name which has to be passed as an input
parameter to PerfDatAPIInit(). This routine has to be called from the
main routine of the calling program.

Note

The application name passed to the initialization routine of the VSI
PERFDAT API must not exceed 10 characters.

The DQL interface checks if an application collection database
descriptor with the same name as specified by the application name
parameter exists in the descriptor table of the VSI PERFDAT
configuration database. An application collection database descriptor
contains the record definitions for all metrics of an application
collection database. Such an application collection database descriptor
is required by the VSI PERFDAT API in order to create or access an
application collection database (The next section of this document
provides detailed information about application collection databases). If
this check fails the API initialization fails.

Due to this implementation the design rules of the distributed VSI
PERFDAT collection database allow that several programs on the same
node can access the same application collection database as illustrated
in Fig. 1.1 (see next section of this document).

If such an application collection database descriptor exists,
PerfDatAPIInit()registers the collection notification method passed to
the routine. The VSI PERFDAT API guarantees that all application
programs that are associated with the same application are triggered at
the same time to collect, to calculate and to insert the data records into
the metrics (tables) of the associated application collection database.

The API always triggers such a collection event at the end of a sample
interval. The sample interval is defined by the collection profile used to
start the application data collection. Two different methods can be
defined of how the calling program will be notified to insert data
records:

 Event flag
If an event flag number greater than 0 is passed to
PerfDatAPIInit() this event flag will be set at the end of a sample
interval.

 AST routine call

Introduction

DO-DPDAUG-01A - 10 – Version 4.8

If a valid address of a user AST routine is passed to
PerfDatAPIInit() this routine will be called at the end of the
sample interval except if an event flag number greater than 0
has been specified. If both, an event flag number greater than 0
and a valid user AST routine address are specified only the
event flag is set. The user defined AST routine will not be called.

Note

In contrast to other VSI PERFDAT standard collections it is important to
emphasize that all programs associated with an application using the
VSI PERFDAT API running on any of the OpenVMS cluster members will
be triggered at the same time to insert data and not just the programs
that are started on a particular node.

Using the AST notification method requires no additional main loop
coding compared to the event flag notification method (the calling
program has to wait for the event flag to be set by the VSI PERFDAT API
in the main loop). The disadvantage of the AST notification method is
that the execution of the data collection and data insert processing
routine is not under the control of the calling program since the AST
routine is directly called from the VSI PERFDAT API at the end of each
sample interval.

Neither of these notification methods are triggered by the API unless a
data collection is started for the application that the program belongs
to. Thus, after the event notification method has been registered the
PerfDatAPIInit()routine checks if an entry exists in the auto-start table of
the VSI PERFDAT configuration database for the application specified by
the application name parameter and the node the program was started
on.

If no such auto-start entry exists the routine immediately returns to the
caller. Otherwise the data collection defined in the auto-start entry will
automatically be started. This means that the API creates or, if the
collection database already exists, attaches the associated collection
database and starts notifying the calling program to collect its data at
the end of each sample interval as specified by the collection profile
defined in the auto-start entry.

Note

Due to the design of the VSI PERFDAT API a program can be associated
with up to 16 application collection databases. Each application
database association has to be explicitly initialized by
callingPerfDatAPIInit().

2. PerfDatAPIInsertRecord() or PerfDatAPIAssocInsertRecord()

Introduction

DO-DPDAUG-01A - 11 – Version 4.8

PerfDatAPIInsertRecord() is recommended to be called if the calling
program is associated with only one application collection database. It
inserts a data record into the application collection database. This
routine requires two input parameters:

 Metric name
This argument defines the metric (table) of the associated
application collection database to insert the data record
addressed by the data record descriptor. If no such metric exists
in the associated application collection database the routine
fails.

 API data record descriptor
The API data record descriptor contains the pointer to a buffer
that contains the data record and the length of the data record.
The type definition of the API data descriptor record is defined
in the header file:

o PERFDAT$INCLUDE:PERFDAT_API.H.

If the program is associated with more than one application collection
database PerfDatAPIAssocInsertRecord()has to called to insert a data
record into a particular application collection database the program is
associated with. This routine requires three input parameters:

 Application name
This argument specifies the name of an application data
collection handle. An application data collection handle refers
the application collection database to insert the data record
addressed by the data record descriptor. If no application data
collection (application database association) exists with the
same name the routine fails.

 Metric name
This argument defines the metric (table) of the associated
application collection database to insert the data record
addressed by the data record descriptor. If no such metric exists
in the associated application collection database the routine
fails.

 API data record descriptor
The API data record descriptor contains the pointer to a buffer
that contains the data record and the length of the data record.
The type definition of the API data descriptor record is defined
in the header file:

o PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIInsertRecord()and PerfDatAPIAssocInsertRecord()have to be
called from the routines that are triggered whenever the API notifies
the program to collect and insert data.

The data types used by the API routines and the C prototypes of the API
routines are defined in the header file PERFDAT$INCLUDE:PERFDAT_API.H. This

Introduction

DO-DPDAUG-01A - 12 – Version 4.8

header file has to be included in each module of the application program that
calls the VSI PERFDAT API routines.

Beside these three routines the VSI PERFDAT API provides several other callable
routines. As has been stated previously it is not the aim to describe all of these
in detail in this section. For a detailed description of all API routines please refer
to the VSI PERFDAT API reference section in this manual

1.4 Application collection database

Once an application data collection has been started, because either:

 An auto-start entry exists for the application, and the node the program
that is associated with the application exists when the program is
started (see previous section).

 The application data collection is started using the PERFDAT_MGR utility
START COLLECTION command.

 The data collection is started directly from the program by calling the
PerfDatAPIStartColl() or PerfDatAPIAssocStartColl()

the programmer does not have to care about closing and opening data files
according to the VSI PERFDAT database design rules. The data file management
is automatically performed by the VSI PERFDAT API.

Due to the VSI PERFDAT database design rules the VSI PERFDAT API creates one
collection data file per day and node for a particular application data collection
regardless of how many programs associated with the application are started on
that node and regardless if some or all of the programs are re-started during the
day. Thus, all programs running on the same node and associated with the same
application collection database access the same application collection database
files. Fig. 1.1 illustrates this behavior.

An application data collection is defined by the application name and the
collection profile used to start the application data collection.

At day change the data file is closed and a new data file is created if there are
still some active programs associated with the application collection database.

The sum of all data files created on one node for a particular application and
collection profile is called the application collection database.

The database alias for each application collection database is automatically
assigned and cannot be changed by the user. The format of the database alias
is:

 ApplicationName@Nodename_collection-profile

Introduction

DO-DPDAUG-01A - 13 – Version 4.8

Thus, if at least one program associated with the application TEST is running on
node VMSTM1 and the application data collection was defined to start using the
collection profile DEFAULT the VSI PERFDAT API creates the application
collection database TEST@VMSTM1_DEFAULT. If the same program is started
on another OpenVMS node a new application collection database is created. For
example if the same program is alsostarted on node VMSTM2 the application
database TEST@VMSTM2_DEFAULT will be created.

Fig. 1.1 Application collection database access when using the VSI PERFDAT API to

insert data into the distributed VSI PERFDAT collection database. In this
example the programs A, B and C are members of the same application.
Program A is started twice on node VMSTM1 and once on node VMSTM4.
Program B runs only on node VMSTM1, and program C runs only on node
VMSTM2. Since these programs belong to the same application all
processes running one of these programs on a particular node access the
same application database. Assuming the application data collection was
started with the DEFAULT collection profile the processes 1, 2 and 3 access
the application collection database TEST@VMSTM1_DEFAULT and the
processes 4 and 5 access the application database
TEST@VMSTM2_DEFAULT. As shown in this example the programs that

Introduction

DO-DPDAUG-01A - 14 – Version 4.8

are members of the same application can, but do not have to insert data
into all metrics of an application collection databases.

Introduction

DO-DPDAUG-01A - 15 – Version 4.8

1.5 Configuration requirements

1.5.1 Collection database descriptor

As described in the previous section an application collection database
descriptor must exist in the descriptor table of the VSI PERFDAT configuration
database with the same name as the application name passed in the API
initialization routine PerfDatAPIInit().

Such a database descriptor can be defined by loading a descriptor file that
contains the required definitions into the VSI PERFDAT configuration database
using the PERFDAT_MGR command:

$ MCR PERFDAT_MGR LOAD METRIX descriptor-load-file

A descriptor load file must contain:

 A system definition block
 A metric (table) description section

In the context of the VSI PERFDAT API the system definition block defines the
application that can be associated with the collection database defined in the
load file.

The metric descriptor section contains the record descriptors for all metrics
(tables) of the application collection database defined by the load file.

The system definition block starts with the keyword

 OS_TYPE:
and ends with the keyword

 OS_TYPE_END:

Note

The colon character “:” at the end of the keywords marks the start and end of
a metric descriptor block and is mandatory.

The system definition block contains a single line with three parameters as
shown in the example below:

OS_TYPE:

TEST: COM$_APP: PERFDAT$_NODE_APPL:
OS_TYPE_END:

The first parameter (TEST) defines which application can be associated with the
collection database. The second parameter (COM$_APP) defines that the

Introduction

DO-DPDAUG-01A - 16 – Version 4.8

collection database is accessed via the VSI PERFDAT API, and the third
parameter (PERFDAT$_NODE_APPL) is required by the DQL interface when a
user accesses the collection database via the GUI for visualizing and analyzing
the collected application data.

Thus, the system definition block in this example defines that the metric
descriptor section of the load file contains the metric descriptors for a collection
database that can be associated with application TEST.

Note

Use exactly the same keywords to define the second and third parameters in
the system definition block as shown in the example above. Only the first
parameter defining the application that can be associated with the collection
database is user definable.

The metric descriptor section defines the record layout (field name, field
description, field data type, field length and unit of the values stored in this data
field) of the metrics (tables) of the collection database defined by the load file.
Each metric is defined by a metric descriptor block. Since a collection database
can contain up to 99 metrics, the metric descriptor section can contain up to 99
metric descriptor blocks.

A metric descriptor block starts with the keyword

 METRIX_metric-name:
and ends with

 METRIX_metric-name_END:

The metric-name parameter specifies the name of the metric defined within the
metric descriptor block. The metric name (not case sensitive) has to be passed
as one of the required input parameter to the API routine
PerfDatAPIInsertRecord() when inserting a data record into a particular metric
(table) of the application collection database.

Note

The colons character “:” at the end of the keywords marks the start and end
of a metric descriptor block and is mandatory.

A metric descriptor block contains the field definitions of all fields of the metric.
Each line describes one data field of the metric. Five properties have to be
defined for each data field:

 Field name
The field name is used by the DQL interface to address a particular data
field in a metric. The field name is a string with a maximum length of 15
characters and has to be unique within a metric descriptor block.

 Data type and options

Introduction

DO-DPDAUG-01A - 17 – Version 4.8

o Data type keywords
 FIELD$_STRING

Data field contains a zero terminated string.
 FIELD$_INTEGER

Data field contains an integer.
 FIELD$_UNSIGNED

Data field contains an unsigned integer.
 FIELD$_QUAD

Data field contains a quad word.
 FIELD$_FLOAT

Data field contains a float.
 FIELD$_DATETIME

Data field contains date and time (quad word).

o Data option keyword
 FIELD$_PRIMKEY

It indicates that the content of the field is part of the
element key. The element key is used by the DQL
interface to select all data of a particular element from
a metric. For example, the data collection files created
by the OpenVMS data collector contain the metric
PROCESS. The OpenVMS data collector stores the
performance data of the OpenVMS processes running
on a node into this metric. This metric contains one
primary key field - the string field PrcName - which
contains the process name of a particular OpenVMS
process. The DQL interface uses this field to select all
data stored in the PROCESS metric to select the data of
a particular OpenVMS process collected by the
OpenVMS data collector.

This option has to be assigned to at least one of the
data fields defined by a metric descriptor block.
Otherwise the metric descriptor block is invalid. The
primary key option can be assigned to a maximum of 3
data fields. Assigning this field option to more then 3
data fields causes unpredictable behavior of the DQL
interface.

Note

The primary key data option can be assigned to any
data field of any data type except to data fields of type
FIELD$_DATETIME.

 FIELD$_INFO

This data option indicates that the field content is only
informational, and will not be visible to the GUI.

Introduction

DO-DPDAUG-01A - 18 – Version 4.8

These two data options FIELD$_PRIMKEY and FIELD$_INFOare
mutually exclusive.

Use the OR (|) sign to separate the data type and data option.
Examples:

FIELD$_STRING|FIELD$_PRIMKEY
The data field is a string and part of the element key.

FIELD$_INTEGER|FIELD$_INFO
The data field is an integer and not visible to the GUI.

 Length of the data field

This parameter defines the field length in bytes.

Note

If the field type is FIELD$_DATETIME, always enter 8 (quadword length).

Note

If the field type is FIELD$_STRING, the data field contains a zero
terminated string. Thus, the maximum length of the string that can be
stored in such a string data field is the length defined herein minus 1.
For example if you define a length of 32 characters the maximum
length of the string is 31 characters.

 Short description of the data field

A comment that briefly describes the contents of the data field. The
maximum length of the field description is 64 characters.

 Unit of the data field
Specifies the unit of the data field (e.g. 1/s, MB, sec …).

The data field properties have to be separated by a colon character (“:”).

Note

One (and only one) time data field must be defined in a metric descriptor
block and at least one data field has to be defined as a primary key field
(except the time data field – see above). The data fields in a metric descriptor
have to be ordered according to the following rules:

 All primary key data fields
 Time data field
 Remaining data fields.

Example of a metric descriptor block:

METRIX_PRCIO:

Introduction

DO-DPDAUG-01A - 19 – Version 4.8

Process: FIELD$_STRING|FIELD$_PRIMARY:32: Process name: [N/A]:
Time: FIELD$_DATETIME:8: Time:[s]:
DIO: FIELD$_FLOAT:4: Direct I/O rate: [1/s]:
BIO: FIELD$_FLOAT:4: Buffered I/O rate: [1/s]:

METRIX_PRCIO_END:

The metric descriptor block in the example above defines the metric PRCIO. The
record of the metric contains four data fields. The Process data field is the only
primary key data field. Thus, it is the first entry in the descriptor block followed
by the required time data field. The remaining data fields DIO and BIO of the
metric PRCIO both have floating point data types.

The VSI PERFDAT installation procedure provides an example database
descriptor load file:

 PERFDAT$EXAMPLES:PERFDAT_API_TEST.CFG

1.6 Managing application data collections

As described in the previous sections application data collections can be
managed without any programming effort using the VSI
PERFDATPERFDAT_MGR utility. Once an application database descriptor has
been loaded into the VSI PERFDAT configuration database the user can:

 Add/Modify application collection profiles.
 Add/Modify auto-start entries for the application data collection.
 Add/Modify report profiles used by the auto-trend engine to extract

trend or capacity reports from the data collection files created by the
application programs using the VSI PERFDAT API.

 Start/Stop application data collections without affecting the application
programs that run the application data collection.

 Enable/disable online alerting for the application data collection
without affecting the application programs that run the application data
collection.

 Monitor the status of an application data collection.

1.6.1 Application collection profiles

As with any other VSI PERFDAT data collection created by any of the VSI
PERFDAT data collectors (OpenVMS data collector, SNMP extension, EVA
extension), application data collections are profile controlled. In order to add,
modify or delete an application data collection profile use the PERFDAT_MGR
commands:

 ADD RPOFILE
 MODIFY PROFILE

Introduction

DO-DPDAUG-01A - 20 – Version 4.8

 DELETE PROFILE

The use of the /OS_TYPE qualifier is mandatory. The value assigned to the
/OS_TYPE qualifier specifies the application the collection profile is valid for. An
application collection database descriptor with the same name must exist in the
VSI PERFDAT configuration database. Otherwise the PERFDAT_MGR commands
fails.

Example:

$ MCR PERFDAT_MGR ADD PROFILE DEFAULT/OS_TYPE=TEST

This command starts the collection profile wizard to configure the collection
profile DEFAULT valid for the application TEST.

For detailed information about adding, modifying or deleting collection profiles
using the PERFDAT_MGR utility please refer to the utility’s online help or to the
manual:

 VSI PERFDAT – PERFDAT_MGR Reference Manual

1.6.2 Application report profiles

Application data collections can be processed by the VSI PERFDAT auto-trend
engine as with any other collection database created by any other data collector
provided with VSI PERFDAT (OpenVMS data collector, SNMP extension, EVA
extension). In order to extract trend and capacity reports from a collection
database a report profile has to be defined.

Report profiles for application data collections can be managed using the
PERFDAT_MGR commands:

 ADD REPORT
 MODIFY REPORT
 DELETE REPORT

The use of the /OS_TYPE qualifier is mandatory. The value assigned to the
/OS_TYPE qualifier specifies the application the report profile is valid for. An
application collection database descriptor with the same name must exist in the
VSI PERFDAT configuration database. Otherwise the PERFDAT_MGR commands
fails.

Example:

$ MCR PERFDAT_MGR REPORT PROFILE WEEK/OS_TYPE=TEST

This command starts the report profile wizard to configure the collection report
WEEK valid for the application TEST.

Introduction

DO-DPDAUG-01A - 21 – Version 4.8

For more detailed information about adding, modifying or deleting report
profiles using the PERFDAT_MGR utility please refer to the utility’s online help
or to the manual:

 VSI PERFDAT – PERFDAT_MGR Reference Manual

1.6.3 Application auto-start entries

As described in section1.3 Using the C Programming API the initialization routine
of the API searches for an entry in the VSI PERFDAT auto-start table of the
configuration database valid for the node a program using the VSI PERFDAT API
was started on and the application name passed to the initialization routine. If
such an auto-start entry exists the VSI PERFDAT API starts the application data
collection processing without any additional programming effort.

To add, modify or delete an auto-start entry for a particular node and
application use the PERFDAT_MGR commands:

 ADD AUTOSTART
 MODIFY AUTOSTART
 DELETE AUTOSTART

The use of the /OS_TYPE qualifier is mandatory. The value assigned to the
/OS_TYPE qualifier specifies the application the auto-start entry is valid for. An
application collection database descriptor with the same name must exist in the
VSI PERFDAT configuration database. Otherwise the PERFDAT_MGR commands
fails.

Example:

$ MCR PERFDAT_MGR ADD AUTOSTART VMSTM1/OS_TYPE=TEST

This command starts the auto-start wizard to add an auto-start entry for node
VMSTM1 valid for application TEST.

For more detailed information about adding, modifying or deleting auto-start
entries using the PERFDAT_MGR utility please refer to the utility’s online help or
to the manual:

 VSI PERFDAT – PERFDAT_MGR Reference Manual

1.6.4 Start/Stop of an application collection

Application data collections can be started and stopped during the run-time of
the programs that use the VSI PERFDAT API to insert data records into an
application collection database without any programming effort and without
affecting the running program.

Introduction

DO-DPDAUG-01A - 22 – Version 4.8

To start or to stop an application data collection use the PERFDAT_MGR
commands:

 START COLLECTIONprofile-name
 STOP COLLECTIONprofile-name

The use of the /OS_TYPE qualifier is mandatory. The value assigned to the
/OS_TYPE qualifier addresses the application that is affected by the start or stop
command. The profile-name parameter specifies an existing collection profile
for the application defined by the /OS_TYPE qualifier.

The START COLLECTION command fails if:

 The collection profile specified by the profile-name parameter does not
exist in the VSI PERFDAT configuration database for the application
defined by the /OS_TYPE qualifier.

 No program is running on any cluster node that is associated with the
application defined by the /OS_TYPE qualifier.

 An application data collection using another collection profile is already
active for the application defined by the /OS_TYPE qualifier.

The STOP COLLECTION command fails if:

 The application data collection had not been started with the collection
profile defined by the profile-name parameter.

 No program associated with the application defined by the /OS_TYPE
qualifier is running on any cluster node.

When starting an application data collection with the START COLLECTION
command auto-start entries are automatically created or modified (if they
already exist) for all cluster members. This guarantees that if a program
associated with the application defined by the /OS_TYPE qualifier is restarted
after the start command has been executed that this program will automatically
start data collection processing.

Note

The /NODE qualifier is not valid for starting or stopping an application data
collection. If an application data collection is started or stopped all programs
associated with the application defined by the /OS_TYPE qualifier running on
any OpenVMS cluster member are triggered to start or to stop data collection
processing.

Example:

$ MCR PERFDAT_MGR START COLLECTION DEFAULT/OS_TYPE=TEST

This command triggers all programs associated with application TEST running on
any OpenVMS cluster member to start data collection processing using the
collection profile DEFAULT.

Introduction

DO-DPDAUG-01A - 23 – Version 4.8

For more detailed information about the following tasks, please refer to the
PERFDAT_MGR utility online help or to the manual VSI PERFDAT_MGR
Reference Manual:

 Starting and stopping data collections
 Adding, modifying or deleting auto-start entries

Introduction

DO-DPDAUG-01A - 24 – Version 4.8

1.6.5 Enable/Disable online alerting

Online alerting can be enabled or disabled during the run-time for any
application data collection as with any other VSI PERFDAT data collection.

To enable or disable online alerting for a particular application data collection
use the PERFDAT_MGR commands:

 ENABLE ALERT
 DISABLE ALERT

The use of the /OS_TYPE qualifier is mandatory. Online alerting will be enabled
for the application addressed by the value assigned to the /OS_TYPE qualifier.

When online alerting is enabled for an application data collection the statistics
defined within an alert definition file are monitored if they exceed specified
thresholds. The alert definition file must be defined whenever the ENABLE
ALERT command is executed since no default alert definition file exists for
application data collections. Thus, the /ALERT_FILENAME qualifier is mandatory
when the user enables online alerting for application data collections.

For detailed information about online alerting and alert definition files please
refer to the PERFDAT_MGR utility online help or to the following manuals:

 VSI PERFDAT – PERFDAT_MGR Reference Manual
 VSI PERFDAT – Architecture and Technical Description

1.6.6 Displaying the application data collection status

To display the status of an application data collection use the PERFDAT_MGR
command:

 SHOW COLLECTION

As with any other VSI PERFDAT data collections the SHOW COLLECTION
command displays the collection profile used to run a particular application data
collection and in addition the process names of all processes that run programs
associated with the same application.

All qualifiers of the SHOW COLLECTION command are valid for displaying the
status of application data collections.

Introduction

DO-DPDAUG-01A - 25 – Version 4.8

Example:

$ MCR PERFDAT_MGR SHOW COLLECTION/OS_TYPE=TEST

PROFILE: DEFAULT Application: TEST@VMSTM1

Collection sample interval: 120 sec
PRCIO Metrix enabled: TRUE
PRCMEM Metrix enabled: TRUE

Online alerting enabled: FALSE
Collection data can be accessed online: TRUE

Processes running the collection: _FTA5:@VMSTM1
 _FTA8:@VMSTM1

PROFILE: DEFAULT Application: TEST@VMSTM4

Collection sample interval: 120 sec
PRCIO Metrix enabled: TRUE
PRCMEM Metrix enabled: TRUE

Online alerting enabled: FALSE
Collection data can be accessed online: TRUE

Processes running the collection: _FTA3:@VMSTM4

In this example the status of the application data collection associated with the
application TEST is displayed. The application data collection was started with
collection profile DEFAULT. The SHOW command lists the settings of this profile
and the processes that are associated with this application.

For detailed information about displaying the status of data collections please
refer to the PERFDAT_MGR utility’s online help or to the following manual:

 VSI PERFDAT – PERFDAT_MGR Reference Manual

1.7 Floating point format

The VSI PERFDAT API as well as the DQL interface uses the G_FLOAT format for
double precision floating point variables and VAX F_FLOAT for single precision
floating point variables. Thus, if any metric of an application collection database
contains single precision floating point data fields, make sure that these floating
point data are passed in VAX F_FLOAT format to the API routine
PerfDatAPIInsertRecord(). Otherwise these data fields will not be readable if a
user accesses this data either using the DQL$ command line utility or the VSI
PERFDAT GUI.

Introduction

DO-DPDAUG-01A - 26 – Version 4.8

G_FLOAT/VAX F-FLOAT are the default floating point formats on Alpha but not
on IA64. The default floating point formats on IA64 are IEEE T_FLOAT/IEEE S-
FLOAT. Thus, one has to take special care of floating point variables when using
the VSI PERFDAT API to insert application data into the distributed VSI PERFDAT
collection database on IA64.

Options:

 Compile all programs using VSI PERFDAT API routines with
/FLOAT=G_FLOAT on IA64

 Do not define any floating point data field in a metric of an application
collection database.

 Convert the floating point values from the internal floating format into
VAX F_FLOAT within your program format before inserting the data
using thePerfDatAPIInsertRecord() API routine.

1.8 User privileges

Only users that at least have the NETMBX, TMPMBX and SYSLCK privileges
assigned can run programs that call the VSI PERFDAT API routines. In addition
the PERFDAT_API identifier has to be granted to the user regardless if the user is
a full privileged user (i.e. SYSTTEM) or not.

To grant a user the PERFDAT_API identifier, use the OpenVMS AUTHORIZE
utility.

For more detailed information about how to grant a user an identifier please
refer to the OpenVMS documentation.

DO-DPDAUG-01A - 27 – Version 4.8

2

API Routine Reference Section

This section contains detailed descriptions of the routines provided by the VSI
PERFDAT application programming interface.

PerfDatAPIAssocDisableAlert

DO-DPDAUG-01A - 28 – Version 4.8

2.1 PerfDatAPIAssocDisableAlert

Disable online alerting for a particular application database association.

C Prototype

int PerfDatAPIAssocDisableAlert (char *sAppName);

Arguments

sAppName
API usage: application database association handle
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the name of a particular application
database association handle. The maximum length is 10 characters.

Description

This routine disables online alerting for a particular application database
association specified by the sAppName argument.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller. If the application data collection specified by sAppName does not exist
(PerfDatApiInit() has not been called for this application database association)
PD$_ASSOCNOTEXIST is returned. If online alerting is already disabled the
routine returns PD$_ALERTDIS.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Condition values returned

PD$_SUCCESS Online alerting has been successfully disabled.
PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_ALERTDIS Online alerting is already disabled.
PD$_ASSOCNOTEXIST Application database association handle defined by

sAppName does not exist.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIAssocEnableAlert

DO-DPDAUG-01A - 29 – Version 4.8

2.2 PerfDatAPIAssocEnableAlert

Enable online alerting for a particular application database association.

C Prototype

int PerfDatAPIAssocEnableAlert (char *sAppName,

char *sAlertFileName);

Arguments

sAppName
API usage: application database association handle
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the name of a particular application
database association handle. The maximum length is 10 characters.

sAlertFileName
API usage: alert definition file name
Type: zero terminated character-coded text string
Access: read only
Mechanism: by reference

The sAlertFileName argument contains the reference to a zero terminated
character-coded text string that specifies the alert definition file name used by
the online alerting sub-system to check performance alert conditions.

Description

This routine enables online alerting for a particular application database
association defined by sAppName with the alert definition file specified by the
sAlertFileName argument.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller.If the application database association specified by sAppName does not
exist (PerfDatApiInit() has not been called for this application database
association) PD$_ASSOCNOTEXIST is returned. If data collection processing is
inactive the routine returns PD$_SHUTDOWN.

If online alerting is already enabled, online alerting will be automatically
disabled and re-enabled with the alert definition file specified by the
sAlertFileName argument.

PerfDatAPIAssocEnableAlert

DO-DPDAUG-01A - 30 – Version 4.8

If the alert definition file does not exist SS$_NOSUCHENTRY is returned to the
caller.

If the sAlertFileName argument refers to a zero length text string or the
reference is invalid (i.e. NULL pointer) this routine searches for an entry in the
auto-start table of the VSI PERFDAT configuration database valid for the node
on which the program is running and the application the program is associated
with. If no auto-start entry exists SS$_NOSUCHENTRY is returned to the caller.

If an auto-start entry exists the routine checks whether an alert definition file is
defined in the auto-start entry. If neither an alert definition file has been
defined nor the alert definition file defined in the auto-start entry exists
SS$_NOSUCHENTRY is returned. Otherwise online alerting is enabled with the
alert definition file defined in the auto-start entry.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Condition values returned

PD$_SUCCESS Online alerting has been successfully enabled
PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_SHUTDOWN Data collection processing is inactive.
PD$_ASSOCNOTEXIST Application database association handle defined by

sAppName does not exist.
SS$_NOSUCHENTRY Alert definition file does not exist.

Any condition values returned by the DQL interface of VSI PERFDAT

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIAssocInsertRecord

DO-DPDAUG-01A - 31 – Version 4.8

2.3 PerfDatAPIAssocInsertRecord

This routine inserts a data record into a metric of a particular application
collection database that has been associated with the calling program.

C Prototype

int PerfDatAPIAssocInserRecord (char *sAppName,

char * sMetrix,
tPerfDatAPIDataDsc *prData);

Arguments

sAppName
API usage: application database association handle
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the name of a particular application
database association handle. The maximum length is 10 characters.

sMetrix
API usage: metric name of the associated collection database
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

This argument defines the metric (table) of the associated application collection
database to insert the data record addressed by the prData argument.

The sMetrix argument contains the 32 bit address pointing to a zero terminated
character-coded text string.

prData
API usage: data to insert
Type: API data descriptor
Access: read-only
Mechanism: by 32-bit API data descriptor reference

This argument contains the 32-bit address pointing to an API data descriptor. An
API data descriptor addresses the buffer that contains the data record to be
inserted and the length of the data record.

Description

PerfDatAPIAssocInsertRecord

DO-DPDAUG-01A - 32 – Version 4.8

This routine inserts a data record into a particular metric of the associated
application collection database specified by the sAppName argument.

The sMetrix argument defines the metric (table) of the associated collection
database to insert the data record addressed by the data record descriptor
prData. If no such metric exists in the associated collection database the routine
fails.

The data record to be inserted into the metric defined by the sMetrix argument
has to be passed to this routine by use of an API data descriptor. An API data
descriptor (see the data type definition below) contains the address to a buffer
containing the data record to be inserted into the metric and the length of the
data record.

typedef struct perfdat$data_dsc
{

long dsc$l_length;
void *dsc$v_pointer;

} tPerfDatAPIDataDsc;

dsc$l_length length of the data record to insert.
dsc$v_pointer void pointer to the buffer containing the data record.

The data fields of the data record addressed by the dsc$v_pointer field of the
API data descriptor have to be ordered according to the record definition of the
metric specified by the sMetrix argument. The record definitions of all metrics
of an application collection database are defined by a collection database
descriptor stored in the VSI PERFDAT configuration database. A collection
database descriptor of an application database can be defined by loading a
descriptor load file. For more information about collection database descriptors
and how to create a descriptor load file and how to define metric record
descriptor please refer to the section 1.5.1 Collection database descriptor.

Any metric record descriptor has to contain one time data field (see 1.5.1
Collection database descriptor). The collection time is automatically inserted
into the time field of the data record passed to this routine before it is inserted
into the metric defined.

Condition values returned

PD$_SUCCESS Data record has been successfully inserted into the

metric defined by the sMetrix argument.
PD$_NOTINCOLL Metric defined by the sMetrix argument is not

enabled (has been disabled by the collection profile
used to start the data collection) for the application
data collection.

PerfDatAPIAssocInsertRecord

DO-DPDAUG-01A - 33 – Version 4.8

PD$_ASSOCNOTEXIST Application database association handle defined by
sAppName does not exist.

SS$_INVARG SS$_INVARG is returned to the caller if:
 The metric defined by the sMetrix argument

does not exist in the application database
associated with the program.

 The data record passed to the routine does not
match the data record definition of the metric
defined by the sMetrix argument.

RMS$_DUP Data record with the same primary key index
already exist in the metric defined by the sMetrix
argument.

Any condition values returned by RMS.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIAssocIsAlertEnabled

DO-DPDAUG-01A - 34 – Version 4.8

2.4 PerfDatAPIAssocIsAlertEnabled

Tests if online alerting is enabled for a particular application database
association.

C Prototype

int PerfDatAPIAssocIsAlertEnabled (char *sAppName,

char *sAlertFileName,
int iLen);

Arguments

sAppName
API usage: application database association handle
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the name of a particular application
database association handle. The maximum length is 10 characters.

sAlertFileName
API usage: alert file name buffer
Type: character-coded text string
Access: write only
Mechanism: by reference

The sAlertFileName argument contains the 32-bit address of a user defined
string buffer.

If online alerting is enabled for the application database association, this routine
copies the alert definition file name used by the online alerting sub-system into
the string buffer as a null terminated character-coded text string.

iLen
API usage: length of the alert file name buffer
Type: integer
Access: read only
Mechanism: by value

Length of the user defined string buffer addressed by the sAlertFileName
argument.

Description

PerfDatAPIAssocIsAlertEnabled

DO-DPDAUG-01A - 35 – Version 4.8

This routine checks if online alerting is enabled for the application database
association specified by the sAppName argument.

If online alerting is enabled for the application database association, this routine
copies the alert definition file name used by the online alerting sub-system into
the string buffer addressed by the sAlertFileName argument as a zero
terminated character-coded text string. If the size of the user define string
buffer is less than the string length of the alert definition file name
SS$_BADPARAM is returned.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller.

If online alerting is disabled or data collection processing is inactive
SS$_NOSUCHENTRY is returned.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Condition values returned

PD$_SUCCESS Online alerting is enabled and the alert definition

file used by the online alerting sub-system has been
successfully copied into the user defined string
buffer.

PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_ASSOCNOTEXIST Application database association handle defined by

sAppName does not exist..
SS$_BADPARAM Online alerting is enabled but the alert definition

file used by the online alerting sub-system cannot
be copied into the user defined string buffer
because the string buffer is too small.

SS$_NOSUCHENTRY Data collection processing is inactive.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIAssocIsCollStarted

DO-DPDAUG-01A - 36 – Version 4.8

2.5 PerfDatAPIAssocIsCollStarted

Tests if data collection processing is active for a particular application data
collection.

C Prototype

int PerfDatAPIAssocIsCollStarted (char *sAppName,

char *sProfileName,
int iLen);

Arguments

sAppName
API usage: application database association handle
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the name of a particular application
database association handle. The maximum length is 10 characters.

sProfileName
API usage: collection profile name buffer
Type: character-coded text string
Access: write only
Mechanism: by reference

The sProfileName argument contains the 32-bit address of a user defined string
buffer.

If data collection processing is currently active this routines copies the collection
profile name used to start the application data collection into the string buffer
as a zero terminated character-coded text string. The maximum length of a
collection profile name is 48 characters. Thus, the length of the string buffer
addressed by the sProfileName argument should be at least 48 characters.

iLen
API usage: length of the collection profile name buffer
Type: integer
Access: read only
Mechanism: by value

Length of the user defined string buffer addressed by the sProfileName
argument.

PerfDatAPIAssocIsCollStarted

DO-DPDAUG-01A - 37 – Version 4.8

Description

This routine checks if data collection processing is active for the application
database association specified by thesAppName argument.

If data collection processing is currently active this routines copies the collection
profile name used to start the application data collection into the string buffer
addressed by the sProfileName argument as a zero terminated character-coded
text string. The maximum length of a collection profile name is 48 characters.
Thus, the length of user defined string buffer should be greater than 48
characters. If the size of the user define string buffer is less than the string
length of the collection profile name SS$_BADPARAM is returned.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller.

If data collection processing is inactive SS$_NOSUCHENTRY is returned.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Condition values returned

PD$_SUCCESS Data collection processing is active and the

collection profile used to start the application data
collection has been successfully copied into the user
defined string buffer.

PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_ASSOCNOTEXIST Application database association handle defined by

sAppName does not exist.
SS$_BADPARAM Data collection processing is active but the

collection profile name used to start the application
data collection cannot not be copied into the user
defined string buffer because the size of the string
buffer is too small.

SS$_NOSUCHENTRY Data collection processing is inactive.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIAssocIsInit

DO-DPDAUG-01A - 38 – Version 4.8

2.6 PerfDatAPIAssocIsInit

Tests if a particular application database association exists and has been
initialized by a previous call to PerfDatAPIInit().

C Prototype

int PerfDatAPIAssocIsInit (char *sAppName);

Arguments

sAppName
API usage: application database association handle
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the name of a particular application
database association handle. The maximum length is 10 characters.

Description

This routine checks if the application database association specified by the
sAppName argument exists and has been initialized by a previous call to
PerfDatAPIInit(). The routine returns to the caller:

 PD$_SUCCESS
Application database association specifiedby sAppName is initialized.

 PD$_NOINIT
VSI PERFDAT API is not initialized.

 PD$_ASSOCNOTEXIST
Application database association specified by sAppName does not exist.

The return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Condition values returned

PD$_SUCCESS Database association specifiedby sAppName is

initialized.
PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_ASSOCNOTEXIST Application database association handle defined by

sAppName does not exist.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIAssocRelAssoc

DO-DPDAUG-01A - 39 – Version 4.8

2.7 PerfDatAPIAssocRelAssoc

Releases an application database association previously created by calling the
routine PerfDatAPIInit().

C Prototype

int PerfDatAPIAssocRelAssoc (char *sAppName);

Arguments

sAppName
API usage: application database association handle
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the name of a particular application
database association handle. The maximum length is 10 characters.

Description

This routine releases the application database association previously created by
calling the routine PerfDatAPIInit().

The sAppName argument specifies the name of the application database
association to release.

Data collection processing has to be stopped in advance of calling this routine
either by executing the STOP COLLECTION command of the PERFDAT_MGR
utility or by calling the PerfDatAPIAssocStopColl() routine. Otherwise the routine
fails.

Condition values returned

PD$_SUCCESS The application database association has been

successfully released.
PD$_COLLACT The routine was unable to release the application

database association because data collection
processing is still in progress.

PD$_ASSOCNOTEXIST Application database association handle defined by
sAppName does not exist.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIAssocStartColl

DO-DPDAUG-01A - 40 – Version 4.8

2.8 PerfDatAPIAssocStartColl

Start data collection processing for a particular application database association.

C Prototype

int PerfDatAPIAssocStartColl (char *sAppName , char *sProfileName);

Arguments

sAppName
API usage: application database association handle
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the name of a particular application
database association handle. The maximum length is 10 characters.

sProfileName
API usage: collection profile name
Type: zero terminated character-coded text string
Access: read only
Mechanism: by reference

Collection profile name used to start application data collection processing for
the program.

The sProfileName argument contains the 32 bit address pointing to a zero
terminated character-coded text string.

Description

This routine starts data collection processing for a particular application
database association specified by the sAppName argument with the collection
profile defined by the sProfileName argument.

If data collection processing is already active, the active data collection is not
stopped and restarted with the collection profiled defined by the sProfileName
argument. In this case PD$_STARTUP is returned.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller.

PerfDatAPIAssocStartColl

DO-DPDAUG-01A - 41 – Version 4.8

If the application database association specified by sAppName does not exist
(PerfDatApiInit() has not been called for this application database association)
PD$_ASSOCNOTEXIST is returned.

If the collection profile does not exist in the VSI PERFDAT configuration database
for the application the program is associated with SS$_NOSUCHENTRY is
returned.

If the sProfileName argument refers to a zero length string or the reference is
invalid (i.e. NULL pointer) this routine searches for an entry in the auto-start
table of the VSI PERFDAT configuration database valid for the node on which the
program is running and the application the program is associated with. If no
auto-start entry exist SS$_NOSUCHENTRY is returned to the caller.

If an auto-start entry exists the routine starts data collection processing with the
collection profile defined by the auto-start entry.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Condition values returned

PD$_SUCCESS Data collection processing has been successfully

started.
PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_STARTUP Data collection processing is already active.
PD$_ASSOCNOTEXIST Application database association handle defined by

sAppName does not exist.
SS$_NOSUCHENTRY Collection profile name passed to the routine does

not exist or no auto-start entry exists for the node
the program is running and the application the
program is associated with.

Any condition values returned by the DQL interface of VSI PERFDAT

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIAssocStopColl

DO-DPDAUG-01A - 42 – Version 4.8

2.9 PerfDatAPIAssocStopColl

Stop data collection processing for a particular application database association.

C Prototype

int PerfDatAPIAssocStopColl (char *sAppName);

Arguments

sAppName
API usage: application database association handle
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the name of a particular application
database association handle. The maximum length is 10 characters.

Description

This routine stops data collection processing the collection database association
specified by the sAppName argument and disables online alerting if it has been
enabled. The collection database association remains initialized. Thus, data
collection processing can be restarted either by calling the API routine
PerfDatAPIAssocStartColl() or with the START COLLECTION command of the
PERFDAT_MGR utility at any point in time after data collection processing has
been stopped by calling this routine.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller.

If the application database association specified by sAppName does not exist
(PerfDatApiInit() has not been called for this application database association)
PD$_ASSOCNOTEXIST is returned.

If data collection processing is inactive PD$_SHUTDOWN is returned.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Condition values returned

PD$_SUCCESS Data collection processing has been successfully

stopped.
PD$_NOINIT VSI PERFDAT API is not initialized.

PerfDatAPIAssocStopColl

DO-DPDAUG-01A - 43 – Version 4.8

PD$_SHUTDOWN Data collection processing is inactive.
PD$_ASSOCNOTEXIST Application database association handle defined by

sAppName does not exist.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIDisableAlert

DO-DPDAUG-01A - 44 – Version 4.8

2.10 PerfDatAPIDisableAlert

Disable online alerting for the first application database that has been
associated with the calling program.

C Prototype

int PerfDatAPIDisableAlert (void);

Arguments

None

Description

Disable online alerting for the first application database that has been
associated with the calling program.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller. If online alerting is already disabled PD$_ALERTDIS is returned.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Note

This function should be called only if the calling program is associated with
one application collection database. If the program is associated with more
than one application database PerfDatAPIAssocDisableAlert()should be used.

Condition values returned

PD$_SUCCESS Online alerting has been successfully disabled.
PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_ALERTDIS Online alerting is already disabled.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIEnableAlert

DO-DPDAUG-01A - 45 – Version 4.8

2.11 PerfDatAPIEnableAlert

Enable online alerting for the first application database that has been associated
with the calling program.

C Prototype

int PerfDatAPIEnableAlert (char *sAlertFileName);

Arguments

sAlertFileName
API usage: alert definition file name
Type: zero terminated character-coded text string
Access: read only
Mechanism: by reference

The sAlertFileName argument contains the reference to a zero terminated
character-coded text string that specifies the alert definition file name used by
the online alerting sub-system to check performance alert conditions.

Description

This routine enables online alerting for the first application database that has
been associated with the calling program with the alert definition file specified
by the sAlertFileName argument.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller. If data collection processing is inactive the routine returns
PD$_SHUTDOWN.

If online alerting is already enabled, online alerting will be automatically
disabled and re-enabled with the alert definition file specified by the
sAlertFileName argument.

If the alert definition file does not exist SS$_NOSUCHENTRY is returned to the
caller.

If the sAlertFileName argument refers to a zero length text string or the
reference is invalid (i.e. NULL pointer) this routine searches for an entry in the
auto-start table of the VSI PERFDAT configuration database valid for the node
on which the program is running and the application the program is associated
with. If no auto-start entry exists SS$_NOSUCHENTRY is returned to the caller.

If an auto-start entry exists the routine checks whether an alert definition file is
defined in the auto-start entry. If neither an alert definition file has been

PerfDatAPIEnableAlert

DO-DPDAUG-01A - 46 – Version 4.8

defined nor the alert definition file defined in the auto-start entry exists
SS$_NOSUCHENTRY is returned. Otherwise online alerting is enabled with the
alert definition file defined in the auto-start entry.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Note

This function should be called only if the calling program is associated with
one application collection database. If the program is associated with more
than one application database PerfDatAPIAssocEnableAlert()should be used.

Condition values returned

PD$_SUCCESS Online alerting has been successfully enabled
PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_SHUTDOWN Data collection processing is inactive.
SS$_NOSUCHENTRY Alert definition file does not exist.

Any condition values returned by the DQL interface of VSI PERFDAT

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIInit

DO-DPDAUG-01A - 47 – Version 4.8

2.12 PerfDatAPIInit

This routine initializes the VSI PERFDAT API and requests the VSI PERFDAT DQL
interface to associate a collection database with the calling program.

C Prototype

int PerfDatAPIInit (unsigned int iEf, void (*pCollectAst) (),

unsigned __int64 qAstPara, void (*pExceptionAst) (),
char *sAppName, char *sVersion);

Arguments

iEf
API usage: ef_number
Type: unsigned integer
Access: read only
Mechanism: by value

Event flag that the VSI PERFDAT API sets at the end of each collection sample
interval to notify the calling program to collect, to calculate and to insert the
data records into the metrics (tables) of the associated application collection
database.

The iEf argument is an unsigned integer value containing the number of the
event flag.

If the iEf argument is zero the VSI PERFDAT API executes the collection AST
routine defined by the pCollectAst argument at the end of each data collection
interval. If both arguments are not defined this routine fails.

pCollectAst
API usage: AST procedure
Type: procedure value
Access: call without stack unwinding
Mechanism: by 32-bit reference

User defined collection AST routine to be called by the VSI PERFDAT API at the
end of each data collection interval. This argument contains the address of the
user defined collection AST routine.

If the iEf argument contains a value greater than zero the pCollectAst argument
is ignored. If both arguments are not defined the routine fails.

qAstPara
API usage: user argument

PerfDatAPIInit

DO-DPDAUG-01A - 48 – Version 4.8

Type: unsigned quad word
Access: read only
Mechanism: by 64-bit value

AST parameter to be passed to the user defined collection AST routine specified
by the pCollectAst argument. The AST parameter is an unsigned quad word
value.

pExceptionAst
API usage: AST procedure
Type: procedure value
Access: call without stack unwinding
Mechanism: by 32-bit reference

This argument defines a user defined exception handling routine. This routine is
called whenever:

1. a run-time error occurs in an API routine
2. data collection processing has been started or stopped via the

PERFDAT_MGR utility
3. online alerting has been enabled or disabled via the PERFDAT_MGR

utility.

sAppName
API usage: application database association name
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sAppName argument contains the reference to a zero terminated
character-coded text string that contains the application database association
name. The maximum length of the application name is 10 characters.

This routine requests the DQL interface of VSI PERFDAT to associate a collection
database with the calling program. The handle of this association is the name
defined by the sAppName argument.

sVersion
API usage: application version string
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

The sVersion argument contains the reference to a zero terminated character-
coded text string. The maximum length of the text string addressed by this
argument is 12 characters.

The sVersion argument is optional. This argument can be used to pass the
version (i.e. “V1.1”) of the application defined by the sAppName argument to

PerfDatAPIInit

DO-DPDAUG-01A - 49 – Version 4.8

the VSI PERFDAT API. The version string defined by this argument is inserted
into the header of the application database the program is associated with. If
this argument is omitted either if the NULL pointer is assigned to the argument
or the length of the text string addressed by the sVersion argument is zero, the
version string “V?.?” is inserted into the application database header.

Description

This routine initializes the VSI PERFDAT API and requests the VSI PERFDAT DQL
interface to associate a collection database with the calling program. The handle
of this association is the application database association name defined by the
sAppName argument. The sAppName contains the reference to a zero
terminated character-coded text string that contains the application database
association name. The maximum length of the application name is 10
characters.

Due to the design of the VSI PERFDAT API a program can be associated with up
to 16 application collection databases. Each application database association
has to be explicitly initialized by calling PerfDatAPIInit().

The DQL interface checks if an application collection database descriptor with
the same name as specified by the sAppName argument exists in the descriptor
table of the VSI PERFDAT configuration database. An application collection
database descriptor contains the record definitions for all metrics of an
application collection database. Such an application collection database
descriptor is required by the VSI PERFDAT API in order to create or access an
application collection database (for detailed information about application
databases and collection database descriptors please refer to the sections 1.4
Application collection database and 1.5.1 Collection database descriptor in this
manual). If this check fails the API initialization fails.

If the application collection database descriptor defined by the sAppName
argument exists, this routine registers the collection notification method passed
to the routine. The VSI PERFDAT API triggers the calling program to collect, to
calculate and to insert the data records into the metrics (tables) of the
associated application collection database at the end of each sample interval.
The sample interval is defined by the collection profile used to start an
application data collection.

If an event flag number greater than zero is defined by the iEf argument this
event flag is set at the end of each sample interval. If the iEf argument is greater
than zero the pCollectAst and qAstPara arguments are ignored. If the iEf
argument is zero the VSI PERFDAT API executes the collection AST routine
defined by the pCollectAst at the end of each sample interval. The VSI PERFDAT
API passes the AST parameter defined by the qAstPara argument to the
pCollectAst routine.

PerfDatAPIInit

DO-DPDAUG-01A - 50 – Version 4.8

Using the AST notification method requires no additional main loop coding
compared with the event flag notification method (the calling program has to
wait for the event flag to be set by the VSI PERFDAT API in the main loop). The
disadvantage of the AST notification method is that the execution of the data
collection and data insert processing routine is not under the control of the
calling program since the AST routine is directly called by the VSI PERFDAT API at
the end of each sample interval.

After the event notification method has been registered the
PerfDatAPIInit()routine checks if an entry exists in the auto-start table of the VSI
PERFDAT configuration database for the application specified by the application
name parameter and the node the program was started on.

If no such auto-start entry exists the routine immediately returns to the caller.
Otherwise the data collection defined in the auto-start entry will automatically
be started. This means that the VSI PERFDAT API creates or, if the collection
database already exists, attaches the associated collection database and starts
notifying the calling program to collect its data at the end of each sample
interval as specified by the collection profile defined in the auto-start entry. If
online alerting is enabled in the auto-start entry and the defined online
definition file exists online alerting is automatically enabled when this routine
starts the application data collection.

The pExceptionAst argument specifies a user-defined exception handling
routine. This routine is called whenever:

 a run-time error occurs in an API routine
 data collection processing has been started or stopped via the

PERFDAT_MGR utility
 online alerting has been enabled or disabled via the PERFDAT_MGR

utility.

Whenever the VSI PERFDAT API executes the user defined AST routine defined
by the pExceptionAst argument a 32-bit reference to an API error block
structure is passed to this AST routine. The type definition of the API error block
structure is shown below:

typedef struct perfdat$error_block
{

int iStatus;
int iAPICodeLine;
char sAPIRoutine[32];
char sVmsErrCode[128];

} tPerfDatAPIErrBlk;

iStatus status code value field
If a VSI PERFDAT API routine has failed the status code field contains the status
code returned by the failing routine. Otherwise this field contains the status
codes listed below:

PerfDatAPIInit

DO-DPDAUG-01A - 51 – Version 4.8

 PD$_STARTUP
Data collection processing has been started with the START COLLECTION
command of the PERFDAT_MGR utility.

 PD$_SHUTDOWN
Data collection processing has been stopped with the STOP COLLECTION
command of the PERFDAT_MGR utility.

 PD$_ALERTENB
Online alerting has been enabled with the ENABLE ALERT command of
the PERFDAT_MGR utility.

 PD$_ALERTDIS
Online alerting has been disabled with the ENABLE ALERT command of
the PERFDAT_MGR utility.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

iAPICodeLine API source code line of the failing instruction
If a VSI PERFDAT API routine has failed this field contains the VSI PERFDAT API
source code line of the failing instruction. If the exception handling AST routine
is called due to the execution of aPERFDAT_MGR command (start/stop data
collection, enable/disable online alerting) this field always contains the value 0.

sAPIRoutine failed API procedure name
If a VSI PERFDAT API routine has failed this field contains the VSI PERFDAT API
procedure name of the failing instruction. If the exception handling AST routine
is called due to the execution of a PERFDAT_MGR command (start/stop data
collection, enable/disable online alerting) this field contains a zero length text
string.

sVmsErrCode textual description of the status code value
If a VSI PERFDAT API routine has failed this field contains the textual description
of the status code value in iStatus. If the exception handling AST routine is called
due to the execution of a PERFDAT_MGR command (start/stop data collection,
enable/disable online alerting) this field contains a zero length text string.

If a VSI PERFDAT API routine has failed the API guarantees that data collection
processing and on line alerting has been stopped before the user-defined
exception handling routines is executed. Thus, whenever the exception AST
routine is called due to an API routine failure the programmer does not have to
care about stopping the collection processing, disabling online alerting or to
release any data structures allocated for the application data collection or
online alerting. The application database association is not released.

ThepExceptionAst argument is optional. If the calling program provides no
exception handling AST routine assign the NULL pointer to this argument.

The sVersion argument is optional. This argument can be used to pass the
version (i.e. “V1.1”) of the application defined by the sAppName argument to
the VSI PERFDAT API. The version string defined by this argument is inserted
into the header of the application database the program is associated with. If

PerfDatAPIInit

DO-DPDAUG-01A - 52 – Version 4.8

this argument is omitted either if the NULL pointer is assigned to the argument
or the length of the text string addressed by the sVersion argument is zero, the
version string “V?.?” is inserted into the application database header.

Condition values returned

PD$_SUCCESS The VSI PERFDAT API has been successfully initialized.
PD$_INITIALIZED The VSI PERFDAT API is already initialized.
PD$_STARTUP The VSI PERFDAT API is already initialized and data

collection processing is in progress.
SS$_AUTHFAIL The user is not authorized to call the VSI PERFDAT API

routine. Either the SYSLCK privilege is missing or the
PERFDAT_API identifier has not been granted to the
user (see 1.8 User privileges).

SS$_BADPARAM SS$_BADPARAM is returned either:
 Neither a valid event flag (iEf argument) nora

valid user defined collection AST routine
(pCollectAST argument) has been passed to the
routine.

 An invalid application name (sAppName
argument) has been defined. The application
name is invalid if:

o No application collection database
descriptor with the same name exists in
the VSI PERFDAT configuration
database.

o The reference to the zero terminated
character- coded text string is invalid

o The length of the character-coded text
string is 0 or greater than 10.

Any condition values returned by the routine PerfDatAPIStartColl(),
PerfDatAPIAssocStartColl()and the VSI PERFDAT DQL interface.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Programming example

The VSI PERFDAT installation procedure provides two program examples that
illustrate the use of this routine:

 PERFDAT$EXAMPLES:PERFDAT_API_TEST_EF.C
 PERFDAT$EXAMPLES:PERFDAT_API_TEST_AST.C

PerfDatAPIInsertRecord

DO-DPDAUG-01A - 53 – Version 4.8

2.13 PerfDatAPIInsertRecord

This routine inserts a data record into a particular metric of the first application
database that has been associated with the calling program.

C Prototype

int PerfDatAPIInserRecord (char * sMetrix, tPerfDatAPIDataDsc *prData);

Arguments

sMetrix
API usage: metric name of the associated collection database
Type: zero terminated character-coded text string
Access: read-only
Mechanism: by reference

This argument defines the metric (table) of the associated application collection
database to insert the data record addressed by the prData argument.

The sMetrix argument contains the 32-bit address pointing to a zero terminated
character-coded text string.

prData
API usage: data to insert
Type: API data descriptor
Access: read-only
Mechanism: by 32-bit API data descriptor reference

This argument contains the 32-bit address pointing to an API data descriptor. An
API data descriptor addresses the buffer that contains the data record to be
inserted and the length of the data record.

Description

This routine inserts a data record into a particular metric of the first application
database that has been associated with the calling program.

The sMetrix argument defines the metric (table) of the associated collection
database to insert the data record addressed by the data record
descriptorprData. If no such metric exists in the associated collection database
the routine fails.

The data record to be inserted into the metric defined by the sMetrix argument
has to be passed to this routine by use of an API data descriptor. An API data
descriptor (see the data type definition below) contains the address to a buffer

PerfDatAPIInsertRecord

DO-DPDAUG-01A - 54 – Version 4.8

containing the data record to be inserted into the metric and the length of the
data record.

typedef struct perfdat$data_dsc
{

long dsc$l_length;
void *dsc$v_pointer;

} tPerfDatAPIDataDsc;

dsc$l_length length of the data record to insert.
dsc$v_pointer void pointer to the buffer containing the data record.

The data fields of the data record addressed by the dsc$v_pointer field of the
API data descriptor have to be ordered according to the record definition of the
metric specified by the sMetrix argument. The record definitions of all metrics
of an application collection database are defined by a collection database
descriptor stored in the VSI PERFDAT configuration database. A collection
database descriptor of an application database can be defined by loading a
descriptor load file. For more information about collection database descriptors
and how to create a descriptor load file and how to define metric record
descriptor please refer to the section 1.5.1 Collection database descriptor.

Any metric record descriptor has to contain one time data field (see 1.5.1
Collection database descriptor). The collection time is automatically inserted
into the time field of the data record passed to this routine before it is inserted
into the metric defined.

Note

This function should be called only if the calling program is associated with
one application collection database. If the program is associated with more
than one application database PerfDatAPIAssocInsertRecord()should be used.

Condition values returned

PD$_SUCCESS Data record has been successfully inserted into the

metric defined by the sMetrix argument.
PD$_NOTINCOLL Metric defined by the sMetrix argument is not

enabled (has been disabled by the collection profile
used to start the data collection) for the application
data collection.

SS$_INVARG SS$_INVARG is returned to the caller if:
 The metric defined by the sMetrix argument

does not exist in the application database
associated with the program.

 The data record passed to the routine does not
match the data record definition of the metric
defined by the sMetrix argument.

PerfDatAPIInsertRecord

DO-DPDAUG-01A - 55 – Version 4.8

RMS$_DUP Data record with the same primary key index already
exist in the metric defined by the sMetrix argument.

Any condition values returned by RMS.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Programming example

The VSI PERFDAT installation procedure provides two program examples that
illustrate the use of this routine:

 PERFDAT$EXAMPLES:PERFDAT_API_TEST_EF.C
 PERFDAT$EXAMPLES:PERFDAT_API_TEST_AST.C

PerfDatAPIIsAlertEnabled

DO-DPDAUG-01A - 56 – Version 4.8

2.14 PerfDatAPIIsAlertEnabled

Tests if online alerting is enabled for the first application database that has been
associated with the calling program.

C Prototype

int PerfDatAPIIsAlertEnabled (char *sAlertFileName, int iLen);

Arguments

sAlertFileName
API usage: alert file name buffer
Type: character-coded text string
Access: write only
Mechanism: by reference

The sAlertFileName argument contains the 32-bit address of a user defined
string buffer.

If online alerting is enabled for the application data collection the program is
associated with, this routine copies the alert definition file name used by the
online alerting sub-system into the string buffer as a null terminated character-
coded text string.

iLen
API usage: length of the alert file name buffer
Type: integer
Access: read only
Mechanism: by value

Length of the user defined string buffer addressed by the sAlertFileName
argument.

Description

This routine checks if online alerting is enabled for the first application database
that has been associated with the calling program

If online alerting is enabled for the application data collection the program is
associated with, this routine copies the alert definition file name used by the
online alerting sub-system into the string buffer addressed by the
sAlertFileName argument as a zero terminated character-coded text string. If
the size of the user define string buffer is less than the string length of the alert
definition file name SS$_BADPARAM is returned.

PerfDatAPIIsAlertEnabled

DO-DPDAUG-01A - 57 – Version 4.8

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller.

If online alerting is disabled or data collection processing is inactive
SS$_NOSUCHENTRY is returned.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Note

This function should be called only if the calling program is associated with one
application collection database. If the program is associated with more than
one application database PerfDatAPIAssocIsAlertEnabled()should be used.

Condition values returned

PD$_SUCCESS Online alerting is enabled and the alert definition file

used by the online alerting sub-system has been
successfully copied into the user defined string buffer.

PD$_NOINIT VSI PERFDAT API is not initialized.
SS$_BADPARAM Online alerting is enabled but the alert definition file

used by the online alerting sub-system cannot be
copied into the user defined string buffer because the
string buffer is too small.

SS$_NOSUCHENTRY Data collection processing is inactive.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Programming example

The VSI PERFDAT installation procedure provides two program examples that
illustrate the use of this routine:

 PERFDAT$EXAMPLES:PERFDAT_API_TEST_EF.C
 PERFDAT$EXAMPLES:PERFDAT_API_TEST_AST.C

PerfDatAPIIsCollStarted

DO-DPDAUG-01A - 58 – Version 4.8

2.15 PerfDatAPIIsCollStarted

Tests if data collection processing is active for the first application database that
has been associated with the calling program.

C Prototype

int PerfDatAPIIsCollStarted (char *sProfileName, int iLen);

Arguments

sProfileName
API usage: collection profile name buffer
Type: character-coded text string
Access: write only
Mechanism: by reference

The sProfileName argument contains the 32-bit address of a user defined string
buffer.

Ifdata collection processing is currently active this routines copies the collection
profile name used to start the application data collection into the string buffer
as a zero terminated character-coded text string. The maximum length of a
collection profile name is 48 characters. Thus, the length of the string buffer
addressed by the sProfileName argument should be at least 48 characters.

iLen
API usage: length of the collection profile name buffer
Type: integer
Access: read only
Mechanism: by value

Length of the user defined string buffer addressed by the sProfileName
argument.

Description

This routine checks if data collection processing is active for the first application
database that has been associated with the calling program.

If data collection processing is currently active this routines copies the collection
profile name used to start the application data collection into the string buffer
addressed by the sProfileName argument as a zero terminated character-coded
text string. The maximum length of a collection profile name is 48 characters.
Thus, the length of user defined string buffer should be greater than 48

PerfDatAPIIsCollStarted

DO-DPDAUG-01A - 59 – Version 4.8

characters. If the size of the user define string buffer is less than the string
length of the collection profile name SS$_BADPARAM is returned.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller.

If data collection processing is inactive SS$_NOSUCHENTRY is returned.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Note

This function should be called only if the calling program is associated with
one application collection database. If the program is associated with more
than one application database PerfDatAPIAssocIsCollStarted()should be used.

Condition values returned

PD$_SUCCESS Data collection processing is active and the collection

profile used to start the application data collection
has been successfully copied into the user defined
string buffer.

PD$_NOINIT VSI PERFDAT API is not initialized.
SS$_BADPARAM Data collection processing is active but the collection

profile name used to start the application data
collection cannot not be copied into the user defined
string buffer because the size of the string buffer is
too small.

SS$_NOSUCHENTRY Data collection processing is inactive.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Programming example

The VSI PERFDAT installation procedure provides two program examples that
illustrate the use of this routine:

 PERFDAT$EXAMPLES:PERFDAT_API_TEST_EF.C
 PERFDAT$EXAMPLES:PERFDAT_API_TEST_AST.C

PerfDatAPIIsInit

DO-DPDAUG-01A - 60 – Version 4.8

2.16 PerfDatAPIIsInit

Tests if the VSI PERFDAT API is already initialized and if at least one application
database is associated with the calling program.

C Prototype

int PerfDatAPIIsInit (void);

Arguments

None

Description

The PerfDatAPIIsInit() routine tests if the VSI PERFDAT API is already initialized
and if at least one application database is associated with the calling program.
The routine returns to the caller:

 PD$_SUCCESS VSI PERFDAT API is initialized.
 PD$_NOINIT VSI PERFDAT API is not initialized.

The return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Note

This function should be called only if the calling program is associated with
one application collection database. If the program is associated with more
than one application database PerfDatAPIAssocIsInit()should be used.

Condition values returned

PD$_SUCCESS VSI PERFDAT API is initialized
PD$_NOINIT VSI PERFDAT API is not initialized

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIRelAssoc

DO-DPDAUG-01A - 61 – Version 4.8

2.17 PerfDatAPIRelAssoc

Releases the first application database association created by calling the routine
PerfDatAPIInit().

C Prototype

int PerfDatAPIRelAssoc (void);

Arguments

None

Description

This routine releases the first application database association created by calling
the routine PerfDatAPIInit().

Data collection processing has to be stopped in advance of calling this routine
either by executing the STOP COLLECTION command of the PERFDAT_MGR
utility or by calling the PerfDatAPIStopColl() routine. Otherwise the routine fails.

Note

This function should be called only if the calling program is associated with
one application collection database. If the program is associated with more
than one application database PerfDatAPIAssocRelAssoc() should be used.

Condition values returned

PD$_SUCCESS The application database association has been

successfully released.
PD$_COLLACT The routine was unable to release the application

database association because data collection processing
is still in progress.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIStartColl

DO-DPDAUG-01A - 62 – Version 4.8

2.18 PerfDatAPIStartColl

Start data colllection processing for the first application database that has been
associated with the calling program.

C Prototype

int PerfDatAPIStatup (char *sProfileName);

Arguments

sProfileName
API usage: collection profile name
Type: zero terminated character-coded text string
Access: read only
Mechanism: by reference

Collection profile name used to start application data collection processing for
the program.

The sProfileName argument contains the 32 bit address pointing to a zero
terminated character-coded text string.

Description

This routine starts data collection processing for the first application database
that has been associated with the calling program with the collection profile
defined by the sProfileName argument.

If data collection processing is already active, the active data collection is not
stopped and restarted with the collection profiled defined by the sProfileName
argument. In this case PD$_STARTUP is returned.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller.

If the collection profile does not exist in the VSI PERFDAT configuration database
for the application the program is associated with SS$_NOSUCHENTRY is
returned (the application association is defined when the VSI PERFDAT API is
initialized – see the description of the routine PerfDatAPIInit()).

If the sProfileName argument refers to a zero length string or the reference is
invalid (i.e. NULL pointer) this routine searches for an entry in the auto-start
table of the VSI PERFDAT configuration database valid for the node on which the
program is running and the application the program is associated with. If no
auto-start entry exist SS$_NOSUCHENTRY is returned to the caller.

PerfDatAPIStartColl

DO-DPDAUG-01A - 63 – Version 4.8

If an auto-start entry exists the routine starts data collection processing with the
collection profile defined by the auto-start entry.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Note

This function should be called only if the calling program is associated with
one application collection database. If the program is associated with more
than one application database PerfDatAPIAssocStartColl()should be used.

Condition values returned

PD$_SUCCESS Data collection processing has been successfully

started.
PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_STARTUP Data collection processing is already active.
SS$_NOSUCHENTRY Collection profile name passed to the routine does

not exist or no auto-start entry exists for the node the
program is running and the application the program is
associated with.

Any condition values returned by the DQL interface of VSI PERFDAT

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

PerfDatAPIStopColl

DO-DPDAUG-01A - 64 – Version 4.8

2.19 PerfDatAPIStopColl

Stop data collection processing for the first application database that has been
associated with the calling program.

C Prototype

int PerfDatAPIStopColl (void);

Arguments

None

Description

This routine stops data collection processing for the first application database
that has been associated with the calling program and disables online alerting if
it has been enabled. The VSI PERFDAT API remains initialized (application
database association is still valid). Thus, data collection processing can be
restarted either by calling the API routine PerfDatAPIStartColl() or with the
START COLLECTION command of the PERFDAT_MGR utility at any point in time
after data collection processing has been stopped by calling this routine.

If the VSI PERFDAT API is not initialized the routine returns PD$_NOINIT to the
caller.

If data collection processing is inactive PD$_SHUTDOWN is returned.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

Note

This function should be called only if the calling program is associated with
one application collection database. If the program is associated with more
than one application database PerfDatAPIAssocStopColl()should be used.

Condition values returned

PD$_SUCCESS Data collection processing has been successfully

stopped.
PD$_NOINIT VSI PERFDAT API is not initialized.
PD$_SHUTDOWN Data collection processing is inactive.

The PD$ return codes are defined in PERFDAT$INCLUDE:PERFDAT_API.H.

DO-DPDAUG-01A - 65 – Version 4.8

3

Program Examples

The VSI PERFDAT installation procedure provides two C example programs that
illustrate the use of the VSI PERFDAT API:

 PERFDAT$EXAMPLES:PERFDAT_API_TEST_EF.C
 PERFDAT$EXAMPLES:PERFDAT_API_TEST_AST.C

Basically both programs perform the same tasks. They collect:

 the direct I/O rate
 the buffered I/O rate
 the private page count
 global page count

of the process in whose context the example program is running in.

The main difference between these two programs is how they initialize the VSI
PERFDAT API. In PERFDAT_API_TEST_EF.C the event flag notification method is
used to trigger a data collection. In PERFDAT_API_TEST_AST.C the VSI PERFDAT
C API directly calls a user defined AST routine to collect and insert the data.

3.1 PERFDAT_API_TEST_EF.C

In the main routine of the program the API initialization routine is called to
associate an application collection database with the application name the user
provides in P1 when he starts the program. The application name is copied into
the string variable sApplication.

iStatus = lib$get_ef (&iEF);
…
iStatus = PerfDatAPIInit (iEf, NULL, 0, APIException, sApplication, NULL);
…

In this program a valid event flag number is passed to the initialization routine.
Thus, the API sets this event flag at the end of each sample interval to trigger
data collection and data insert processing of the program.

Since the APIException exception handling routine is defined, the VSI PERFDAT
API will notify the calling program asynchronously whenever:

Program Examples

DO-DPDAUG-01A - 66 – Version 4.8

 a run-time error occurs in an API routines
 data collection processing has been started or stopped via the

PERFDAT_MGR utility
 online alerting has been enabled or disabled via the PERFDAT_MGR

utility.

After calling the VSI PERFDAT API initialization routine PerfDatAPIInit() the
program checks whether a data collection has been automatically started and
online alerting has been enabled by calling the API routines

iStatus = PerfDatAPIIsCollStarted(sProf, sizeof (sProf));
…
iStatus = PerfDatAPIIsAlertEnabled (sAlertFile, sizeof (sAlertFile));

Since the API does not directly call a particular user defined collection AST
routine to perform the data collection processing, the program waits in the
main loop for the event flag to be set by the VSI PERFDAT API and calls the
routine PerfdatAPIExampleCollect() which performs the data collection.

for (;;)
{

iStatus = sys$waitfr (iEf);
if (!ODD (iStatus)) exit (iStatus);
iStatus = sys$clref (iEf);
if (!ODD (iStatus)) exit (iStatus);

iStatus = PerfdatAPIExampleCollect (&rNew, &rOld);
if (!ODD (iStatus)) exit (iStatus);

}

In the routine PerfdatAPIExampleCollect() the data is collected for all metrics
and the data records are inserted into the metric PRCIO and PRCMEM by calling
the API routine PerfDatAPIInsertRecord().

static char sIOMetrix[] = “PRCIO”;
static char sIOMetrix[] = “PRCMEM”;
…
static int PerfdatAPIExampleCollect (tCollection *prNew, tCollection *prOld)
{
…
tPerfDataAPIDataDsc rData;
…

/* insert data into PERFDAT tables */
/* 1. Metrix: PRCIO */
rData.dsc$l_length = sizeof (tProcIO);
rData.dsc$v_pointer = (void*) &rIO;
iStatus = PerfDatAPIInsertRecord (sIOMetrix, &rData);
…

Program Examples

DO-DPDAUG-01A - 67 – Version 4.8

/* 2. Metrix: PRCMEM */
rData.dsc$l_length = sizeof (tProcMem);
rData.dsc$v_pointer = (void*) &prNew->rMem;
iStatus = PerfDatAPIInsertRecord (sMEMMetrix, &rData);
…

}

3.2 PERFDAT_API_TEST_AST.C

In this code example the VSI PERFDAT API is initialized to call a user defined
collection AST routine at the end of each collection interval which contains the
code for data collection and data insert processing of the program.

iStatus = PerfDatAPIInit (0, APICollect, 0, APIException, sApplication, NULL);

The user define AST routineAPICollect()calls PerfdatAPIExampleCollect(), the
same routine used in PERFDAT_API_TEST_EF.C for data collection and data
insert processing.

There are no other code differences between PERFDAT_API_TEST_EF.C and
PERFDAT_API_TEST_AST.C.

Using the AST notification method requires no additional main loop coding
compared with the event flag notification method. The disadvantage of the AST
notification method is that the execution of the data collection and data insert
processing routine is not under the control of the calling program since the AST
routine is called directly from the VSI PERFDAT API at the end of each sample
interval.

3.3 Build instructions

To build the example programs on Alpha:

$ CC/FLOAT=G_FLOAT PERFDAT_API_TEST_EF
$ CC/FLOAT=G_FLOAT PERFDAT_API_TEST_AST
$ LINK PERFDAT_API_TEST_EF,PERFDAT$LIBRARY:PERFDAT_API_AXP/LIB
$ LINK PERFDAT_API_TEST_AST,PERFDAT$LIBRARY:PERFDAT_API_AXP/LIB

To build the example programs on IA64:

$ CC/FLOAT=G_FLOAT PERFDAT_API_TEST_EF
$ CC/FLOAT=G_FLOAT PERFDAT_API_TEST_AST
$ LINK PERFDAT_API_TEST_EF,PERFDAT$LIBRARY:PERFDAT_API_IA64/LIB
$ LINK PERFDAT_API_TEST_AST,PERFDAT$LIBRARY:PERFDAT_API_IA64/LIB

Program Examples

DO-DPDAUG-01A - 68 – Version 4.8

3.4 Configuration instructions

1. As described in previous sections the VSI PERFDAT API tries to associate
an application database with the program based on the application
name passed in the API initialization routine. An application database is
associated with the calling program if an application database
descriptor exists in the VSI PERFDAT configuration database with the
same name as the application name passed in the API initialization
routines. The VSI PERFDAT installation procedure provides the database
descriptor load file PERFDAT$EXAMPLES:PERFDAT_API_TEST.CFG.

Before you run either of the example programs load this database
descriptor load file containing the application database descriptor for
application TEST into the VSI PERFDAT configuration database.

$ MCR PERFDAT_MGR LOAD METRIX

PERFDAT$EXAMPLES:PERFDAT_API_TEST.CFG

2. Create a collection profile for the application TEST:

$ MCR PERFDAT_MGR ADD PROFILE DEFAULT/OS=TEST

 WELCOME to TEST collection profile wizard

 Collection sample interval [120 sec]:
 Enable metrix PRCIO [Yes]:
 Enable metrix PRCMEM [Yes]:
PERFDAT_MGR-I-CFGSUCC, Profile /DEFAULT/ added for OS Type /TEST/

3. Check if the account you are logged into has the following privileges

assigned:
 NETMBX
 TMPMBX
 SYSLCK

4. Check if the PERFDAT_API identifier has been granted to the account

you are logged into. If not, grant the identifier to the user:

$ MCR AUTHORIZE GRANT/IDENT PERFDAT_API user-name

3.5 Running the Example Programs

1. Create foreign commands:

$ PERFDAT_TEST_EF :== $PERFDA$EXAMPLES:PERFDAT_API_TEST_EF.EXE
$ PERFDAT_TEST_AST:== $PERFDA$EXAMPLES:PERFDAT_API_TEST_AST.EXE

Program Examples

DO-DPDAUG-01A - 69 – Version 4.8

2. Start either of the programs using the foreign commands and pass the

application name in P1 to the program that it will be associated with.
Since the database descriptor load file PERFDAT$EXAMPLES:
PERFDAT_API_TEST. CFG contains the application database descriptor
for the application TEST, set the value of P1 to TEST.

$ PERFDAT_TEST_EF TEST
Or
$ PERFDAT_TEST_AST TEST

3. If the example program display the output:

No collection automatically started, no-auto-start entry exists for application
TEST

start the application collection with the collection database profile
previously created (DEFAULT) using the PERFDAT_MGR utility:

$ MCR PERFDAT_MGR START COLLECTION DEFAULT/OS=TEST

